node now does its own grouping of the input rows, and has no need for a
preceding GROUP node in the plan pipeline. This allows elimination of
the misnamed tuplePerGroup option for GROUP, and actually saves more code
in nodeGroup.c than it costs in nodeAgg.c, as well as being presumably
faster. Restructure the API of query_planner so that we do not commit to
using a sorted or unsorted plan in query_planner; instead grouping_planner
makes the decision. (Right now it isn't any smarter than query_planner
was, but that will change as soon as it has the option to select a hash-
based aggregation step.) Despite all the hackery, no initdb needed since
only in-memory node types changed.
that are explicitly JOINed are not considered dependencies unless they
are actually used in the query: mere presence in the joinaliasvars
list of a JOIN RTE doesn't count as being used. The patch touches
a number of files because I needed to generalize the API of
query_tree_walker to support an additional flag bit, but the changes
are otherwise quite small.
pg_language.lancompiler
pg_operator.oprprec
pg_operator.oprisleft
pg_proc.proimplicit
pg_proc.probyte_pct
pg_proc.properbyte_cpu
pg_proc.propercall_cpu
pg_proc.prooutin_ratio
pg_shadow.usetrace
pg_type.typprtlen
pg_type.typreceive
pg_type.typsend
Attempts to use the obsoleted attributes of pg_operator or pg_proc
in the CREATE commands will be greeted by a warning. For pg_type,
there is no warning (yet) because pg_dump scripts still contain these
attributes.
Also remove new but already obsolete spellings
isVolatile, isStable, isImmutable in WITH clause. (Use new syntax
instead.)
PX recombination operator, changes some elog() messages from LOG
to DEBUG1, puts some debugging functions inside the appropriate
#ifdef (not enabled by default), and makes a few other minor
cleanups.
BTW, the elog() change is motivated by at least one user who
has sent a concerned email to -general asking exactly what the
"ERX recombination operator" is, and what it is doing to their
DBMS.
Neil Conway
process function RTE expressions, which they were previously missing.
This allows outer-Var references and subselects to work correctly in
the arguments of a function RTE. Install check to prevent function RTEs
from cross-referencing Vars of sibling FROM-items, which doesn't make
any sense (if you want to join, write a JOIN or WHERE clause).
rather than a Query node; this allows set_plan_references to recurse
into subplans correctly. Fixes core dump on full outer joins in
subplans. Also, invoke preprocess_expression on function RTEs'
function expressions. This seems to fix the planner's problems with
outer-level Vars in function RTEs.
returns-set boolean field in Func and Oper nodes. This allows cleaner,
more reliable tests for expressions returning sets in the planner and
parser. For example, a WHERE clause returning a set is now detected
and complained of in the parser, not only at runtime.
some kibitzing from Tom Lane. Not everything works yet, and there's
no documentation or regression test, but let's commit this so Joe
doesn't need to cope with tracking changes in so many files ...
lists to join RTEs, attach a list of Vars and COALESCE expressions that will
replace the join's alias variables during planning. This simplifies
flatten_join_alias_vars while still making it easy to fix up varno references
when transforming the query tree. Add regression test cases for interactions
of subqueries with outer joins.
volatile), rather than the old cachable/noncachable distinction. This
allows indexscan optimizations in many places where we formerly didn't.
Also, add a pronamespace column to pg_proc (it doesn't do anything yet,
however).
now has an RTE of its own, and references to its outputs now are Vars
referencing the JOIN RTE, rather than CASE-expressions. This allows
reverse-listing in ruleutils.c to use the correct alias easily, rather
than painfully reverse-engineering the alias namespace as it used to do.
Also, nested FULL JOINs work correctly, because the result of the inner
joins are simple Vars that the planner can cope with. This fixes a bug
reported a couple times now, notably by Tatsuo on 18-Nov-01. The alias
Vars are expanded into COALESCE expressions where needed at the very end
of planning, rather than during parsing.
Also, beginnings of support for showing plan qualifier expressions in
EXPLAIN. There are probably still cases that need work.
initdb forced due to change of stored-rule representation.
set-returning functions in its target list. This ensures that we
won't rewrite the query in a way that places set-returning functions
into quals (WHERE clauses). Cf. bug reports from Joe Conway.
from Philip Warner. Side effect of change is that GROUP BY expressions
will not be re-evaluated at multiple plan levels anymore, whereas this
sometimes happened with old code.
clause being added to a particular restriction-clause list is redundant
with those already in the list. This avoids useless work at runtime,
and (perhaps more importantly) keeps the selectivity estimation routines
from generating too-small estimates of numbers of output rows.
Also some minor improvements in OPTIMIZER_DEBUG displays.
pgsql-hackers. pg_opclass now has a row for each opclass supported by each
index AM, not a row for each opclass name. This allows pg_opclass to show
directly whether an AM supports an opclass, and furthermore makes it possible
to store additional information about an opclass that might be AM-dependent.
pg_opclass and pg_amop now store "lossy" and "haskeytype" information that we
previously expected the user to remember to provide in CREATE INDEX commands.
Lossiness is no longer an index-level property, but is associated with the
use of a particular operator in a particular index opclass.
Along the way, IndexSupportInitialize now uses the syscaches to retrieve
pg_amop and pg_amproc entries. I find this reduces backend launch time by
about ten percent, at the cost of a couple more special cases in catcache.c's
IndexScanOK.
Initial work by Oleg Bartunov and Teodor Sigaev, further hacking by Tom Lane.
initdb forced.
has a DISTINCT ON clause, per bug report from Anthony Wood. While at it,
improve the DISTINCT-ON-clause recognizer routine to not be fooled by out-
of-order DISTINCT lists.
WHERE (a = 1 or a = 2) and b = 42
and an index on (a,b), include the clause b = 42 in the indexquals
generated for each arm of the OR clause. Essentially this is an index-
driven conversion from CNF to DNF. Implementation is a bit klugy, but
better than not exploiting the extra quals at all ...
of costsize.c routines to pass Query root, so that costsize can figure
more things out by itself and not be so dependent on its callers to tell
it everything it needs to know. Use selectivity of hash or merge clause
to estimate number of tuples processed internally in these joins
(this is more useful than it would've been before, since eqjoinsel is
somewhat more accurate than before).
create_index_paths are not immediately discarded, but are available for
subsequent planner work. This allows avoiding redundant syscache lookups
in several places. Change interface to operator selectivity estimation
procedures to allow faster and more flexible estimation.
Initdb forced due to change of pg_proc entries for selectivity functions!
a separate statement (though it can still be invoked as part of VACUUM, too).
pg_statistic redesigned to be more flexible about what statistics are
stored. ANALYZE now collects a list of several of the most common values,
not just one, plus a histogram (not just the min and max values). Random
sampling is used to make the process reasonably fast even on very large
tables. The number of values and histogram bins collected is now
user-settable via an ALTER TABLE command.
There is more still to do; the new stats are not being used everywhere
they could be in the planner. But the remaining changes for this project
should be localized, and the behavior is already better than before.
A not-very-related change is that sorting now makes use of btree comparison
routines if it can find one, rather than invoking '<' twice.
as both a GROUP BY item and an output expression, the top-level Group
node should just copy up the evaluated expression value from its input,
rather than re-evaluating the expression. Aside from any performance
benefit this might offer, this avoids a crash when there is a sub-SELECT
in said expression.
comparison does not consider paths different when they differ only in
uninteresting aspects of sort order. (We had a special case of this
consideration for indexscans already, but generalize it to apply to
ordered join paths too.) Be stricter about what is a canonical pathkey
to allow faster pathkey comparison. Cache canonical pathkeys and
dispersion stats for left and right sides of a RestrictInfo's clause,
to avoid repeated computation. Total speedup will depend on number of
tables in a query, but I see about 4x speedup of planning phase for
a sample seven-table query.
joins, and clean things up a good deal at the same time. Append plan node
no longer hacks on rangetable at runtime --- instead, all child tables are
given their own RT entries during planning. Concept of multiple target
tables pushed up into execMain, replacing bug-prone implementation within
nodeAppend. Planner now supports generating Append plans for inheritance
sets either at the top of the plan (the old way) or at the bottom. Expanding
at the bottom is appropriate for tables used as sources, since they may
appear inside an outer join; but we must still expand at the top when the
target of an UPDATE or DELETE is an inheritance set, because we actually need
a different targetlist and junkfilter for each target table in that case.
Fortunately a target table can't be inside an outer join... Bizarre mutual
recursion between union_planner and prepunion.c is gone --- in fact,
union_planner doesn't really have much to do with union queries anymore,
so I renamed it grouping_planner.
ExecutorRun. This allows LIMIT to work in a view. Also, LIMIT in a
cursor declaration will behave in a reasonable fashion, whereas before
it was overridden by the FETCH count.
SQL92 semantics, including support for ALL option. All three can be used
in subqueries and views. DISTINCT and ORDER BY work now in views, too.
This rewrite fixes many problems with cross-datatype UNIONs and INSERT/SELECT
where the SELECT yields different datatypes than the INSERT needs. I did
that by making UNION subqueries and SELECT in INSERT be treated like
subselects-in-FROM, thereby allowing an extra level of targetlist where the
datatype conversions can be inserted safely.
INITDB NEEDED!
(Don't forget that an alias is required.) Views reimplemented as expanding
to subselect-in-FROM. Grouping, aggregates, DISTINCT in views actually
work now (he says optimistically). No UNION support in subselects/views
yet, but I have some ideas about that. Rule-related permissions checking
moved out of rewriter and into executor.
INITDB REQUIRED!
query representation. Note that GEQO_RELS setting is now interpreted
as the number of top-level items in the FROM list, not necessarily the
number of relations in the query. This seems appropriate since we are
only doing join-path searching over the top-level items.
pg_proc.c (where it's actually used). Fix it to correctly handle tlists
that contain resjunk target items, and improve error messages. This
addresses bug reported by Krupnikov 6-July-00.
right thing with variable-free clauses that contain noncachable functions,
such as 'WHERE random() < 0.5' --- these are evaluated once per
potential output tuple. Expressions that contain only Params are
now candidates to be indexscan quals --- for example, 'var = ($1 + 1)'
can now be indexed. Cope with RelabelType nodes atop potential indexscan
variables --- this oversight prevents 7.0.* from recognizing some
potentially indexscanable situations.
that RAND_MAX applies to them, since it doesn't. Instead add a
config.h parameter MAX_RANDOM_VALUE. This is currently set at 2^31-1
but could be auto-configured if that ever proves necessary. Also fix
some outright bugs like calling srand() where srandom() is appropriate.
mergejoinable qual clauses, and add them to the query quals. For
example, WHERE a = b AND b = c will cause us to add AND a = c.
This is necessary to ensure that it's safe to use these variables
as interchangeable sort keys, which is something 7.0 knows how to do.
Should provide a useful improvement in planning ability, too.
for details). It doesn't really do that much yet, since there are no
short-term memory contexts in the executor, but the infrastructure is
in place and long-term contexts are handled reasonably. A few long-
standing bugs have been fixed, such as 'VACUUM; anything' in a single
query string crashing. Also, out-of-memory is now considered a
recoverable ERROR, not FATAL.
Eliminate a large amount of crufty, now-dead code in and around
memory management.
Fix problem with holding off SIGTRAP, SIGSEGV, etc in postmaster and
backend startup.