There are two implementation techniques: the executor understands a new
JOIN_IN jointype, which emits at most one matching row per left-hand row,
or the result of the IN's sub-select can be fed through a DISTINCT filter
and then joined as an ordinary relation.
Along the way, some minor code cleanup in the optimizer; notably, break
out most of the jointree-rearrangement preprocessing in planner.c and
put it in a new file prep/prepjointree.c.
containing a volatile function), rather than only on 'Var = Var' clauses
as before. This makes it practical to do flatten_join_alias_vars at the
start of planning, which in turn eliminates a bunch of klugery inside the
planner to deal with alias vars. As a free side effect, we now detect
implied equality of non-Var expressions; for example in
SELECT ... WHERE a.x = b.y and b.y = 42
we will deduce a.x = 42 and use that as a restriction qual on a. Also,
we can remove the restriction introduced 12/5/02 to prevent pullup of
subqueries whose targetlists contain sublinks.
Still TODO: make statistical estimation routines in selfuncs.c and costsize.c
smarter about expressions that are more complex than plain Vars. The need
for this is considerably greater now that we have to be able to estimate
the suitability of merge and hash join techniques on such expressions.
allocation in best_inner_indexscan(). While at it, simplify GEQO's
interface to the main planner --- make_join_rel() offers exactly the
API it really wants, whereas calling make_rels_by_clause_joins() and
make_rels_by_clauseless_joins() required jumping through hoops.
Rewrite gimme_tree for clarity (sometimes iteration is much better than
recursion), and approximately halve GEQO's runtime by recognizing that
tours of the forms (a,b,c,d,...) and (b,a,c,d,...) are equivalent
because of symmetry in make_join_rel().
a per-query memory context created by CreateExecutorState --- and destroyed
by FreeExecutorState. This provides a final solution to the longstanding
problem of memory leaked by various ExecEndNode calls.
execution state trees, and ExecEvalExpr takes an expression state tree
not an expression plan tree. The plan tree is now read-only as far as
the executor is concerned. Next step is to begin actually exploiting
this property.
so that all executable expression nodes inherit from a common supertype
Expr. This is somewhat of an exercise in code purity rather than any
real functional advance, but getting rid of the extra Oper or Func node
formerly used in each operator or function call should provide at least
a little space and speed improvement.
initdb forced by changes in stored-rules representation.
joinclauses is determined accurately for each join. Formerly, the code only
considered joinclauses that used all of the rels from the outer side of the
join; thus for example
FROM (a CROSS JOIN b) JOIN c ON (c.f1 = a.x AND c.f2 = b.y)
could not exploit a two-column index on c(f1,f2), since neither of the
qual clauses would be in the joininfo list it looked in. The new code does
this correctly, and also is able to eliminate redundant clauses, thus fixing
the problem noted 24-Oct-02 by Hans-Jürgen Schönig.
to be flexible about assignment casts without introducing ambiguity in
operator/function resolution. Introduce a well-defined promotion hierarchy
for numeric datatypes (int2->int4->int8->numeric->float4->float8).
Change make_const to initially label numeric literals as int4, int8, or
numeric (never float8 anymore).
Explicitly mark Func and RelabelType nodes to indicate whether they came
from a function call, explicit cast, or implicit cast; use this to do
reverse-listing more accurately and without so many heuristics.
Explicit casts to char, varchar, bit, varbit will truncate or pad without
raising an error (the pre-7.2 behavior), while assigning to a column without
any explicit cast will still raise an error for wrong-length data like 7.3.
This more nearly follows the SQL spec than 7.2 behavior (we should be
reporting a 'completion condition' in the explicit-cast cases, but we have
no mechanism for that, so just do silent truncation).
Fix some problems with enforcement of typmod for array elements;
it didn't work at all in 'UPDATE ... SET array[n] = foo', for example.
Provide a generalized array_length_coerce() function to replace the
specialized per-array-type functions that used to be needed (and were
missing for NUMERIC as well as all the datetime types).
Add missing conversions int8<->float4, text<->numeric, oid<->int8.
initdb forced.
> src/backend/optimizer/path/indxpath.c; see the "special indexable
> operators" stuff near the bottom of that file. (It's a bit of a crock
> that this code is hardwired there, and not somehow accessed through a
> system catalog, but it's what we've got at the moment.)
The attached patch re-enables a bytea right hand argument (as compared
to a text right hand argument), and enables index usage, for bytea LIKE
Joe Conway
yesterday's proposal to pghackers. Also remove unnecessary parameters
to heap_beginscan, heap_rescan. I modified pg_proc.h to reflect the
new numbers of parameters for the AM interface routines, but did not
force an initdb because nothing actually looks at those fields.
returns-set boolean field in Func and Oper nodes. This allows cleaner,
more reliable tests for expressions returning sets in the planner and
parser. For example, a WHERE clause returning a set is now detected
and complained of in the parser, not only at runtime.
qualified operator names directly, for example CREATE OPERATOR myschema.+
( ... ). To qualify an operator name in an expression you need to write
OPERATOR(myschema.+) (thanks to Peter for suggesting an escape hatch).
I also took advantage of having to reformat pg_operator to fix something
that'd been bugging me for a while: mergejoinable operators should have
explicit links to the associated cross-data-type comparison operators,
rather than hardwiring an assumption that they are named < and >.
volatile), rather than the old cachable/noncachable distinction. This
allows indexscan optimizations in many places where we formerly didn't.
Also, add a pronamespace column to pg_proc (it doesn't do anything yet,
however).
now just below FATAL in server_min_messages. Added more text to
highlight ordering difference between it and client_min_messages.
---------------------------------------------------------------------------
REALLYFATAL => PANIC
STOP => PANIC
New INFO level the prints to client by default
New LOG level the prints to server log by default
Cause VACUUM information to print only to the client
NOTICE => INFO where purely information messages are sent
DEBUG => LOG for purely server status messages
DEBUG removed, kept as backward compatible
DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1 added
DebugLvl removed in favor of new DEBUG[1-5] symbols
New server_min_messages GUC parameter with values:
DEBUG[5-1], INFO, NOTICE, ERROR, LOG, FATAL, PANIC
New client_min_messages GUC parameter with values:
DEBUG[5-1], LOG, INFO, NOTICE, ERROR, FATAL, PANIC
Server startup now logged with LOG instead of DEBUG
Remove debug_level GUC parameter
elog() numbers now start at 10
Add test to print error message if older elog() values are passed to elog()
Bootstrap mode now has a -d that requires an argument, like postmaster
pgsql-hackers. pg_opclass now has a row for each opclass supported by each
index AM, not a row for each opclass name. This allows pg_opclass to show
directly whether an AM supports an opclass, and furthermore makes it possible
to store additional information about an opclass that might be AM-dependent.
pg_opclass and pg_amop now store "lossy" and "haskeytype" information that we
previously expected the user to remember to provide in CREATE INDEX commands.
Lossiness is no longer an index-level property, but is associated with the
use of a particular operator in a particular index opclass.
Along the way, IndexSupportInitialize now uses the syscaches to retrieve
pg_amop and pg_amproc entries. I find this reduces backend launch time by
about ten percent, at the cost of a couple more special cases in catcache.c's
IndexScanOK.
Initial work by Oleg Bartunov and Teodor Sigaev, further hacking by Tom Lane.
initdb forced.
clauses are equal(), before trying to match them up using btree opclass
inference rules. This allows it to recognize many simple cases involving
non-btree operations, for example 'x IS NULL'. Clean up code a little.
Note: I didn't force an initdb, figuring that one today was enough.
However, there is a new function in pg_proc.h, and pg_dump won't be
able to dump partial indexes until you add that function.
IS TRUE, etc, with some degree of verisimilitude. Split out
selectivity support functions from builtins.h into a new header
file selfuncs.h, so as to reduce the number of header files builtins.h
must depend on. Fix a few missing inclusions exposed thereby.
From Joe Conway, with some kibitzing from Tom Lane.
WHERE (a = 1 or a = 2) and b = 42
and an index on (a,b), include the clause b = 42 in the indexquals
generated for each arm of the OR clause. Essentially this is an index-
driven conversion from CNF to DNF. Implementation is a bit klugy, but
better than not exploiting the extra quals at all ...
create_index_paths are not immediately discarded, but are available for
subsequent planner work. This allows avoiding redundant syscache lookups
in several places. Change interface to operator selectivity estimation
procedures to allow faster and more flexible estimation.
Initdb forced due to change of pg_proc entries for selectivity functions!
1. If there is exactly one pg_operator entry of the right name and oprkind,
oper() and related routines would return that entry whether its input type
had anything to do with the request or not. This is just premature
optimization: we shouldn't return the single candidate until after we verify
that it really is a valid candidate, ie, is at least coercion-compatible
with the given types.
2. oper() and related routines only promise a coercion-compatible result.
Unfortunately, there were quite a few callers that assumed the returned
operator is binary-compatible with the given datatype; they would proceed
to call it without making any datatype coercions. These callers include
sorting, grouping, aggregation, and VACUUM ANALYZE. In general I think
it is appropriate for these callers to require an exact or binary-compatible
match, so I've added a new routine compatible_oper() that only succeeds if
it can find an operator that doesn't require any run-time conversions.
Callers now call oper() or compatible_oper() depending on whether they are
prepared to deal with type conversion or not.
The upshot of these bugs is revealed by the following silliness in PL/Tcl's
selftest: it creates an operator @< on int4, and then tries to use it to
sort a char(N) column. The system would let it do that :-( (and evidently
has done so since 6.3 :-( :-(). The result in this case was just a silly
sort order, but the reverse combination would've provoked coredump from
trying to dereference integers. With this fix you get more reasonable
behavior:
pltcl_test=# select * from T_pkey1 order by key1, key2 using @<;
ERROR: Unable to identify an operator '@<' for types 'bpchar' and 'bpchar'
You will have to retype this query using an explicit cast
comparison does not consider paths different when they differ only in
uninteresting aspects of sort order. (We had a special case of this
consideration for indexscans already, but generalize it to apply to
ordered join paths too.) Be stricter about what is a canonical pathkey
to allow faster pathkey comparison. Cache canonical pathkeys and
dispersion stats for left and right sides of a RestrictInfo's clause,
to avoid repeated computation. Total speedup will depend on number of
tables in a query, but I see about 4x speedup of planning phase for
a sample seven-table query.
re-adopt these settings at every postmaster or standalone-backend startup.
This should fix problems with indexes becoming corrupt due to failure to
provide consistent locale environment for postmaster at all times. Also,
refuse to start up a non-locale-enabled compilation in a database originally
initdb'd with a non-C locale. Suppress LIKE index optimization if locale
is not "C" or "POSIX" (are there any other locales where it's safe?).
Issue NOTICE during initdb if selected locale disables LIKE optimization.
maintained for each cache entry. A cache entry will not be freed until
the matching ReleaseSysCache call has been executed. This eliminates
worries about cache entries getting dropped while still in use. See
my posting to pg-hackers of even date for more info.
(Don't forget that an alias is required.) Views reimplemented as expanding
to subselect-in-FROM. Grouping, aggregates, DISTINCT in views actually
work now (he says optimistically). No UNION support in subselects/views
yet, but I have some ideas about that. Rule-related permissions checking
moved out of rewriter and into executor.
INITDB REQUIRED!
for example, an SQL function can be used in a functional index. (I make
no promises about speed, but it'll work ;-).) Clean up and simplify
handling of functions returning sets.
right thing with variable-free clauses that contain noncachable functions,
such as 'WHERE random() < 0.5' --- these are evaluated once per
potential output tuple. Expressions that contain only Params are
now candidates to be indexscan quals --- for example, 'var = ($1 + 1)'
can now be indexed. Cope with RelabelType nodes atop potential indexscan
variables --- this oversight prevents 7.0.* from recognizing some
potentially indexscanable situations.
from Param nodes, per discussion a few days ago on pghackers. Add new
expression node type FieldSelect that implements the functionality where
it's actually needed. Clean up some other unused fields in Func nodes
as well.
NOTE: initdb forced due to change in stored expression trees for rules.
to use with a multiple-key index. Formerly we would only extract clauses
that had to do with the first key of the index, which was correct but
didn't exploit the index fully.
them, but forgot to attach relevant restriction clauses, so that the
plan represented a scan over the whole table with restrictions applied
as qpquals not indexquals. Another day, another bug...
key call sites are changed, but most called functions are still oldstyle.
An exception is that the PL managers are updated (so, for example, NULL
handling now behaves as expected in plperl and plpgsql functions).
NOTE initdb is forced due to added column in pg_proc.
(LIKE and regexp matches). These are not yet referenced in pg_operator,
so by default the system will continue to use eqsel/neqsel.
Also, tweak convert_to_scalar() logic so that common prefixes of strings
are stripped off, allowing better accuracy when all strings in a table
share a common prefix.