the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
the associated datatype as their equality member. This means that these
opclasses can now support plain equality comparisons along with LIKE tests,
thus avoiding the need for an extra index in some applications. This
optimization was not possible when the pattern opclasses were first introduced,
because we didn't insist that text equality meant bitwise equality; but we
do now, so there is no semantic difference between regular and pattern
equality operators.
I removed the name_pattern_ops opclass altogether, since it's really useless:
name's regular comparisons are just strcmp() and are unlikely to become
something different. Instead teach indxpath.c that btree name_ops can be
used for LIKE whether or not the locale is C. This might lead to a useful
speedup in LIKE queries on the system catalogs in non-C locales.
The ~=~ and ~<>~ operators are gone altogether. (It would have been nice to
keep them for backward compatibility's sake, but since the pg_amop structure
doesn't allow multiple equality operators per opclass, there's no way.)
A not-immediately-obvious incompatibility is that the sort order within
bpchar_pattern_ops indexes changes --- it had been identical to plain
strcmp, but is now trailing-blank-insensitive. This will impact
in-place upgrades, if those ever happen.
Per discussions a couple months ago.
no particular need to do get_op_opfamily_properties() while building an
indexscan plan. Postpone that lookup until executor start. This simplifies
createplan.c a lot more than it complicates nodeIndexscan.c, and makes things
more uniform since we already had to do it that way for RowCompare
expressions. Should be a bit faster too, at least for plans that aren't
re-used many times, since we avoid palloc'ing and perhaps copying the
intermediate list data structure.
strings. This patch introduces four support functions cstring_to_text,
cstring_to_text_with_len, text_to_cstring, and text_to_cstring_buffer, and
two macros CStringGetTextDatum and TextDatumGetCString. A number of
existing macros that provided variants on these themes were removed.
Most of the places that need to make such conversions now require just one
function or macro call, in place of the multiple notational layers that used
to be needed. There are no longer any direct calls of textout or textin,
and we got most of the places that were using handmade conversions via
memcpy (there may be a few still lurking, though).
This commit doesn't make any serious effort to eliminate transient memory
leaks caused by detoasting toasted text objects before they reach
text_to_cstring. We changed PG_GETARG_TEXT_P to PG_GETARG_TEXT_PP in a few
places where it was easy, but much more could be done.
Brendan Jurd and Tom Lane
make_greater_string() try harder to generate a string that's actually greater
than its input string. Before we just assumed that making a string that was
memcmp-greater was enough, but it is easy to generate examples where this is
not so when the locale is not C. Instead, loop until the relevant comparison
function agrees that the generated string is greater than the input.
Unfortunately this is probably not enough to guarantee that the generated
string is greater than all extensions of the input, so we cannot relax the
restriction to C locale for the LIKE/regex index optimization. But it should
at least improve the odds of getting a useful selectivity estimate in
prefix_selectivity(). Per example from Guillaume Smet.
Backpatch to 8.1, mainly because that's what the complainant is using...
cheapest-startup-cost innerjoin indexscans, and make joinpath.c consider
both of these (when different) as the inside of a nestloop join. The
original design was based on the assumption that indexscan paths always
have negligible startup cost, and so total cost is the only important
figure of merit; an assumption that's obviously broken by bitmap
indexscans. This oversight could lead to choosing poor plans in cases
where fast-start behavior is more important than total cost, such as
LIMIT and IN queries. 8.1-vintage brain fade exposed by an example from
Chuck D.
competing alternatives for indexes to use in a bitmap scan. The former
coding took estimated selectivity as an overriding factor, causing it to
sometimes choose indexes that were much slower to scan than ones with a
slightly worse selectivity. It was also too narrow-minded about which
combinations of indexes to consider ANDing. The rewrite makes it pay more
attention to index scan cost than selectivity; this seems sane since it's
impossible to have very bad selectivity with low cost, whereas the reverse
isn't true. Also, we now consider each index alone, as well as adding
each index to an AND-group led by each prior index, for a total of about
O(N^2) rather than O(N) combinations considered. This makes the results
much less dependent on the exact order in which the indexes are
considered. It's still a lot cheaper than an O(2^N) exhaustive search.
A prefilter step eliminates all but the cheapest of those indexes using
the same set of WHERE conditions, to keep the effective value of N down in
scenarios where the DBA has created lots of partially-redundant indexes.
possibly be any useful pathkeys --- to wit, queries with neither any
join clauses nor any ORDER BY request. It's nearly free to check for
this case and it saves a useful fraction of the planning time for simple
queries.
First, genericcostestimate() was being way too liberal about including
partial-index conditions in its selectivity estimate, resulting in
substantial underestimates for situations such as an indexqual "x = 42"
used with an index on x "WHERE x >= 40 AND x < 50". While the code is
intentionally set up to favor selecting partial indexes when available,
this was too much...
Second, choose_bitmap_and() was likewise easily fooled by cases of this
type, since it would similarly think that the partial index had selectivity
independent of the indexqual.
Fixed by using predicate_implied_by() rather than simple equality checks
to determine redundancy. This is a good deal more expensive but I don't
see much alternative. At least the extra cost is only paid when there's
actually a partial index under consideration.
Per report from Jeff Davis. I'm not going to risk back-patching this,
though.
available information about the typmod of an expression; namely, Const,
ArrayRef, ArrayExpr, and EXPR and ARRAY SubLinks. In the ArrayExpr and
SubLink cases it wasn't really the data structure's fault, but exprTypmod()
being lazy. This seems like a good idea in view of the expected increase in
typmod usage from Teodor's work to allow user-defined types to have typmods.
In particular this responds to the concerns we had about eliminating the
special-purpose hack that exprTypmod() used to have for BPCHAR Consts.
We can now tell whether or not such a Const has been cast to a specific
length, and report or display properly if so.
initdb forced due to changes in stored rules.
representation of equivalence classes of variables. This is an extensive
rewrite, but it brings a number of benefits:
* planner no longer fails in the presence of "incomplete" operator families
that don't offer operators for every possible combination of datatypes.
* avoid generating and then discarding redundant equality clauses.
* remove bogus assumption that derived equalities always use operators
named "=".
* mergejoins can work with a variety of sort orders (e.g., descending) now,
instead of tying each mergejoinable operator to exactly one sort order.
* better recognition of redundant sort columns.
* can make use of equalities appearing underneath an outer join.
per-column options for btree indexes. The planner's support for this is still
pretty rudimentary; it does not yet know how to plan mergejoins with
nondefault ordering options. The documentation is pretty rudimentary, too.
I'll work on improving that stuff later.
Note incompatible change from prior behavior: ORDER BY ... USING will now be
rejected if the operator is not a less-than or greater-than member of some
btree opclass. This prevents less-than-sane behavior if an operator that
doesn't actually define a proper sort ordering is selected.
cases. Operator classes now exist within "operator families". While most
families are equivalent to a single class, related classes can be grouped
into one family to represent the fact that they are semantically compatible.
Cross-type operators are now naturally adjunct parts of a family, without
having to wedge them into a particular opclass as we had done originally.
This commit restructures the catalogs and cleans up enough of the fallout so
that everything still works at least as well as before, but most of the work
needed to actually improve the planner's behavior will come later. Also,
there are not yet CREATE/DROP/ALTER OPERATOR FAMILY commands; the only way
to create a new family right now is to allow CREATE OPERATOR CLASS to make
one by default. I owe some more documentation work, too. But that can all
be done in smaller pieces once this infrastructure is in place.
effects in a nestloop inner indexscan, I had only dealt with plain index
scans and the index portion of bitmap scans. But there will be cache
benefits for the heap accesses of bitmap scans too, so fix
cost_bitmap_heap_scan() to account for that.
clauses containing no variables and no volatile functions. Such a clause
can be used as a one-time qual in a gating Result plan node, to suppress
plan execution entirely when it is false. Even when the clause is true,
putting it in a gating node wins by avoiding repeated evaluation of the
clause. In previous PG releases, query_planner() would do this for
pseudoconstant clauses appearing at the top level of the jointree, but
there was no ability to generate a gating Result deeper in the plan tree.
To fix it, get rid of the special case in query_planner(), and instead
process pseudoconstant clauses through the normal RestrictInfo qual
distribution mechanism. When a pseudoconstant clause is found attached to
a path node in create_plan(), pull it out and generate a gating Result at
that point. This requires special-casing pseudoconstants in selectivity
estimation and cost_qual_eval, but on the whole it's pretty clean.
It probably even makes the planner a bit faster than before for the normal
case of no pseudoconstants, since removing pull_constant_clauses saves one
useless traversal of the qual tree. Per gripe from Phil Frost.
choose_bitmap_and(). It was way too fuzzy --- per comment, it was meant to be
1% relative difference, but was actually coded as 0.01 absolute difference,
thus causing selectivities of say 0.001 and 0.000000000001 to be treated as
equal. I believe this thinko explains Maxim Boguk's recent complaint. While
we could change it to a relative test coded like compare_fuzzy_path_costs(),
there's a bigger problem here, which is that any fuzziness at all renders the
comparison function non-transitive, which could confuse qsort() to the point
of delivering completely wrong results. So forget the whole thing and just
do an exact comparison.
that the Mackert-Lohmann formula applies across all the repetitions of the
nestloop, not just each scan independently. We use the M-L formula to
estimate the number of pages fetched from the index as well as from the table;
that isn't what it was designed for, but it seems reasonably applicable
anyway. This makes large numbers of repetitions look much cheaper than
before, which accords with many reports we've received of overestimation
of the cost of a nestloop. Also, change the index access cost model to
charge random_page_cost per index leaf page touched, while explicitly
not counting anything for access to metapage or upper tree pages. This
may all need tweaking after we get some field experience, but in simple
tests it seems to be giving saner results than before. The main thing
is to get the infrastructure in place to let cost_index() and amcostestimate
functions take repeated scans into account at all. Per my recent proposal.
Note: this patch changes pg_proc.h, but I did not force initdb because
the changes are basically cosmetic --- the system does not look into
pg_proc to decide how to call an index amcostestimate function, and
there's no way to call such a function from SQL at all.
deciding whether a potential additional indexscan is redundant or not. As now
coded, any use of a partial index that was already used in a previous AND arm
will be rejected as redundant. This might be overly restrictive, but not
considering the point at all is definitely bad, as per example in bug #2441
from Arjen van der Meijden. In particular, a clauseless scan of a partial
index was *never* considered redundant by the previous coding, and that's
surely wrong. Being more flexible would also require some consideration
of how not to double-count the index predicate's selectivity.
condition: when there are multiple possible index paths involving
ScalarArrayOpExprs, they are logically to be ANDed together not ORed.
This thinko was a direct consequence of trying to put the processing
inside generate_bitmap_or_paths(), which I now see was a bit too cute.
So pull it out and make the callers do it separately (there are only two
that need it anyway). Partially responds to bug #2441 from Arjen van der Meijden.
There are some additional infelicities exposed by his example, but they
are also in 8.1.x, while this mistake is not.
had a bad side-effect: it stopped finding plans that involved BitmapAnd
combinations of indexscans using both join and non-join conditions. Instead,
make choose_bitmap_and more aggressive about detecting redundancies between
BitmapOr subplans.
at least one join condition as an indexqual. Before bitmap indexscans, this
oversight didn't really cost much except for redundantly considering the
same join paths twice; but as of 8.1 it could result in silly bitmap scans
that would do the same BitmapOr twice and then BitmapAnd these together :-(
relations: fix the executor so that we can have an Append plan on the
inside of a nestloop and still pass down outer index keys to index scans
within the Append, then generate such plans as if they were regular
inner indexscans. This avoids the need to evaluate the outer relation
multiple times.
requested sort order. It was assuming that build_index_pathkeys always
generates a pathkey per index column, which was not true if implied equality
deduction had determined that two index columns were effectively equated to
each other. Simplest fix seems to be to install an option that causes
build_index_pathkeys to support this behavior as well as the original one.
Per report from Brian Hirt.
and rely exclusively on the SQL type system to tell the difference between
the types. Prevent creation of invalid CIDR values via casting from INET
or set_masklen() --- both of these operations now silently zero any bits
to the right of the netmask. Remove duplicate CIDR comparison operators,
letting the type rely on the INET operators instead.
clauses even if it's an outer join. This is a corner case since such
clauses could only arise from weird OUTER JOIN ON conditions, but worth
fixing. Per example from Ron at cheapcomplexdevices.com.
#2075: consider an index redundant if any of its index conditions were already
used, rather than if all of them were. Also, make the selectivity comparison
a bit fuzzy, so that very small differences in estimated selectivities don't
skew the results.
qualification when the underlying operator is indexable and useOr is true.
That is, indexkey op ANY (ARRAY[...]) is effectively translated into an
OR combination of one indexscan for each array element. This only works
for bitmap index scans, of course, since regular indexscans no longer
support OR'ing of scans. There are still some loose ends to clean up
before changing 'x IN (list)' to translate as a ScalarArrayOpExpr;
for instance predtest.c ought to be taught about it. But this gets the
basic functionality in place.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
sense and rename to "outerjoin_delayed" to more clearly reflect what it
means). I had decided that it was redundant in 8.1, but the folly of this
is exposed by a bug report from Sebastian Böck. The place where it's
needed is to prevent orindxpath.c from cherry-picking arms of an outer-join
OR clause to form a relation restriction that isn't actually legal to push
down to the relation scan level. There may be some legal cases that this
forbids optimizing, but we'd need much closer analysis to determine it.
"optimization". When we find a potentially useful joinclause, we
have to add all its other required_relids to the result, not only the
other clause_relids. They are different in the case of a joinclause
whose applicability has to be postponed due to outer join. We have
to include the extra rels because otherwise, after best_inner_indexscan
masks the join rels with index_outer_relids, it will always fail to
find the joinclause as applicable. Per report from Husam Tomeh.
planning logic for bitmap indexscans. Partial indexes create corner
cases in which a scan might be done with no explicit index qual conditions,
and the code wasn't handling those cases nicely. Also be a little
tenser about eliminating redundant clauses in the generated plan.
Per report from Dmitry Karasik.
propagated inside an outer join. In particular, given
LEFT JOIN ON (A = B) WHERE A = constant, we cannot conclude that
B = constant at the top level (B might be null instead), but we
can nonetheless put a restriction B = constant into the quals for
B's relation, since no inner-side rows not meeting that condition
can contribute to the final result. Similarly, given
FULL JOIN USING (J) WHERE J = constant, we can't directly conclude
that either input J variable = constant, but it's OK to push such
quals into each input rel. Per recent gripe from Kim Bisgaard.
Along the way, remove 'valid_everywhere' flag from RestrictInfo,
as on closer analysis it was not being used for anything, and was
defined backwards anyway.
constraint while determining whether the index sort order matches the
query's ORDER BY. This for example allows an index on (x,y) to match
... WHERE x = 42 ORDER BY y;
It only works for btree indexes, but since those are the only ones we
currently have that are ordered at all, that's good enough for now.
Per popular demand.
nonconsecutive columns of a multicolumn index, as per discussion around
mid-May (pghackers thread "Best way to scan on-disk bitmaps"). This
turns out to require only minimal changes in btree, and so far as I can
see none at all in GiST. btcostestimate did need some work, but its
original assumption that index selectivity == heap selectivity was
quite bogus even before this.