The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
Allowing arrays with a domain type as their element type was left un-done
in the original domain patch, but not for any very good reason. This
omission leads to such surprising results as array_agg() not working on
a domain column, because the parser can't identify a suitable output type
for the polymorphic aggregate.
In order to fix this, first clean up the APIs of coerce_to_domain() and
some internal functions in parse_coerce.c so that we consistently pass
around a CoercionContext along with CoercionForm. Previously, we sometimes
passed an "isExplicit" boolean flag instead, which is strictly less
information; and coerce_to_domain() didn't even get that, but instead had
to reverse-engineer isExplicit from CoercionForm. That's contrary to the
documentation in primnodes.h that says that CoercionForm only affects
display and not semantics. I don't think this change fixes any live bugs,
but it makes things more consistent. The main reason for doing it though
is that now build_coercion_expression() receives ccontext, which it needs
in order to be able to recursively invoke coerce_to_target_type().
Next, reimplement ArrayCoerceExpr so that the node does not directly know
any details of what has to be done to the individual array elements while
performing the array coercion. Instead, the per-element processing is
represented by a sub-expression whose input is a source array element and
whose output is a target array element. This simplifies life in
parse_coerce.c, because it can build that sub-expression by a recursive
invocation of coerce_to_target_type(). The executor now handles the
per-element processing as a compiled expression instead of hard-wired code.
The main advantage of this is that we can use a single ArrayCoerceExpr to
handle as many as three successive steps per element: base type conversion,
typmod coercion, and domain constraint checking. The old code used two
stacked ArrayCoerceExprs to handle type + typmod coercion, which was pretty
inefficient, and adding yet another array deconstruction to do domain
constraint checking seemed very unappetizing.
In the case where we just need a single, very simple coercion function,
doing this straightforwardly leads to a noticeable increase in the
per-array-element runtime cost. Hence, add an additional shortcut evalfunc
in execExprInterp.c that skips unnecessary overhead for that specific form
of expression. The runtime speed of simple cases is within 1% or so of
where it was before, while cases that previously required two levels of
array processing are significantly faster.
Finally, create an implicit array type for every domain type, as we do for
base types, enums, etc. Everything except the array-coercion case seems
to just work without further effort.
Tom Lane, reviewed by Andrew Dunstan
Discussion: https://postgr.es/m/9852.1499791473@sss.pgh.pa.us
Add missing infrastructure for this node type, notably in ruleutils.c where
its lack could demonstrably cause EXPLAIN to fail. Add outfuncs/readfuncs
support. (outfuncs support is useful today for debugging purposes. The
readfuncs support may never be needed, since at present it would only
matter for parallel query and NextValueExpr should never appear in a
parallelizable query; but it seems like a bad idea to have a primnode type
that isn't fully supported here.) Teach planner infrastructure that
NextValueExpr is a volatile, parallel-unsafe, non-leaky expression node
with cost cpu_operator_cost. Given its limited scope of usage, there
*might* be no live bug today from the lack of that knowledge, but it's
certainly going to bite us on the rear someday. Teach pg_stat_statements
about the new node type, too.
While at it, also teach cost_qual_eval() that MinMaxExpr, SQLValueFunction,
XmlExpr, and CoerceToDomain should be charged as cpu_operator_cost.
Failing to do this for SQLValueFunction was an oversight in my commit
0bb51aa96. The others are longer-standing oversights, but no time like the
present to fix them. (In principle, CoerceToDomain could have cost much
higher than this, but it doesn't presently seem worth trying to examine the
domain's constraints here.)
Modify execExprInterp.c to execute NextValueExpr as an out-of-line
function; it seems quite unlikely to me that it's worth insisting that
it be inlined in all expression eval methods. Besides, providing the
out-of-line function doesn't stop anyone from inlining if they want to.
Adjust some places where NextValueExpr support had been inserted with the
aid of a dartboard rather than keeping it in the same order as elsewhere.
Discussion: https://postgr.es/m/23862.1499981661@sss.pgh.pa.us
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
expression_returns_set() used to short-circuit its recursion upon
seeing certain node types, such as DistinctExpr, that it knew the
executor did not support set-valued arguments for. That was never
inherent, though, just a reflection of laziness in execQual.c.
With the new implementation of SRFs there is no reason to think
that any scalar-valued expression node could not have a set-valued
subexpression, except for AggRefs and WindowFuncs where we know there
is a parser check rejecting it. And indeed, the shortcut causes
unexpected failures for cases such as a SRF underneath DistinctExpr,
because the planner stops looking for SRFs too soon.
Discussion: https://postgr.es/m/5259.1497044025@sss.pgh.pa.us
Fix failure to check that we got a plain Const from const-simplification of
a coercion request. This is the cause of bug #14666 from Tian Bing: there
is an int4 to money cast, but it's only stable not immutable (because of
dependence on lc_monetary), resulting in a FuncExpr that the code was
miserably unequipped to deal with, or indeed even to notice that it was
failing to deal with. Add test cases around this coercion behavior.
In view of the above, sprinkle the code liberally with castNode() macros,
in hope of catching the next such bug a bit sooner. Also, change some
functions that were randomly declared to take Node* to take more specific
pointer types. And change some struct fields that were declared Node*
but could be given more specific types, allowing removal of assorted
explicit casts.
Place PARTITION_MAX_KEYS check a bit closer to the code it's protecting.
Likewise check only-one-key-for-list-partitioning restriction in a less
random place.
Avoid not-per-project-style usages like !strcmp(...).
Fix assorted failures to avoid scribbling on the input of parse
transformation. I'm not sure how necessary this is, but it's entirely
silly for these functions to be expending cycles to avoid that and not
getting it right.
Add guards against partitioning on system columns.
Put backend/nodes/ support code into an order that matches handling
of these node types elsewhere.
Annotate the fact that somebody added location fields to PartitionBoundSpec
and PartitionRangeDatum but forgot to handle them in
outfuncs.c/readfuncs.c. This is fairly harmless for production purposes
(since readfuncs.c would just substitute -1 anyway) but it's still bogus.
It's not worth forcing a post-beta1 initdb just to fix this, but if we
have another reason to force initdb before 10.0, we should go back and
clean this up.
Contrariwise, somebody added location fields to PartitionElem and
PartitionSpec but forgot to teach exprLocation() about them.
Consolidate duplicative code in transformPartitionBound().
Improve a couple of error messages.
Improve assorted commentary.
Re-pgindent the files touched by this patch; this affects a few comment
blocks that must have been added quite recently.
Report: https://postgr.es/m/20170524024550.29935.14396@wrigleys.postgresql.org
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type. For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.
As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.
Patch by me, after an idea of Andrew Gierth's.
Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
This is the SQL standard-conforming variant of PostgreSQL's serial
columns. It fixes a few usability issues that serial columns have:
- CREATE TABLE / LIKE copies default but refers to same sequence
- cannot add/drop serialness with ALTER TABLE
- dropping default does not drop sequence
- need to grant separate privileges to sequence
- other slight weirdnesses because serial is some kind of special macro
Reviewed-by: Vitaly Burovoy <vitaly.burovoy@gmail.com>
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
XMLTABLE is defined by the SQL/XML standard as a feature that allows
turning XML-formatted data into relational form, so that it can be used
as a <table primary> in the FROM clause of a query.
This new construct provides significant simplicity and performance
benefit for XML data processing; what in a client-side custom
implementation was reported to take 20 minutes can be executed in 400ms
using XMLTABLE. (The same functionality was said to take 10 seconds
using nested PostgreSQL XPath function calls, and 5 seconds using
XMLReader under PL/Python).
The implemented syntax deviates slightly from what the standard
requires. First, the standard indicates that the PASSING clause is
optional and that multiple XML input documents may be given to it; we
make it mandatory and accept a single document only. Second, we don't
currently support a default namespace to be specified.
This implementation relies on a new executor node based on a hardcoded
method table. (Because the grammar is fixed, there is no extensibility
in the current approach; further constructs can be implemented on top of
this such as JSON_TABLE, but they require changes to core code.)
Author: Pavel Stehule, Álvaro Herrera
Extensively reviewed by: Craig Ringer
Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own. The children are called
partitions and contain all of the actual data. Each partition has an
implicit partitioning constraint. Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed. Partitions
can't have extra columns and may not allow nulls unless the parent
does. Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.
Currently, tables can be range-partitioned or list-partitioned. List
partitioning is limited to a single column, but range partitioning can
involve multiple columns. A partitioning "column" can be an
expression.
Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations. The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.
Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
We implement a dozen or so parameterless functions that the SQL standard
defines special syntax for. Up to now, that was done by converting them
into more or less ad-hoc constructs such as "'now'::text::date". That's
messy for multiple reasons: it exposes what should be implementation
details to users, and performance is worse than it needs to be in several
cases. To improve matters, invent a new expression node type
SQLValueFunction that can represent any of these parameterless functions.
Bump catversion because this changes stored parsetrees for rules.
Discussion: <30058.1463091294@sss.pgh.pa.us>
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.
Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are). By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.
While at it, get rid of Aggref.aggoutputtype. That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.
Assorted comment cleanup as well (there's still more that I want to do
in that line).
catversion bump for change in Aggref node contents. Should be the last
one for partial-aggregation changes.
Discussion: <29309.1466699160@sss.pgh.pa.us>
When doing partial aggregation, the args list of the upper (combining)
Aggref node is replaced by a Var representing the output of the partial
aggregation steps, which has either the aggregate's transition data type
or a serialized representation of that. However, nodeAgg.c blindly
continued to use the args list as an indication of the user-level argument
types. This broke resolution of polymorphic transition datatypes at
executor startup (though it accidentally failed to fail for the ANYARRAY
case, which is likely the only one anyone had tested). Moreover, the
constructed FuncExpr passed to the finalfunc contained completely wrong
information, which would have led to bogus answers or crashes for any case
where the finalfunc examined that information (which is only likely to be
with polymorphic aggregates using a non-polymorphic transition type).
As an independent bug, apply_partialaggref_adjustment neglected to resolve
a polymorphic transition datatype before assigning it as the output type
of the lower-level Aggref node. This again accidentally failed to fail
for ANYARRAY but would be unlikely to work in other cases.
To fix the first problem, record the user-level argument types in a
separate OID-list field of Aggref, and look to that rather than the args
list when asking what the argument types were. (It turns out to be
convenient to include any "direct" arguments in this list too, although
those are not currently subject to being overwritten.)
Rather than adding yet another resolve_aggregate_transtype() call to fix
the second problem, add an aggtranstype field to Aggref, and store the
resolved transition type OID there when the planner first computes it.
(By doing this in the planner and not the parser, we can allow the
aggregate's transition type to change from time to time, although no DDL
support yet exists for that.) This saves nothing of consequence for
simple non-polymorphic aggregates, but for polymorphic transition types
we save a catalog lookup during executor startup as well as several
planner lookups that are new in 9.6 due to parallel query planning.
In passing, fix an error that was introduced into count_agg_clauses_walker
some time ago: it was applying exprTypmod() to something that wasn't an
expression node at all, but a TargetEntry. exprTypmod silently returned
-1 so that there was not an obvious failure, but this broke the intended
sensitivity of aggregate space consumption estimates to the typmod of
varchar and similar data types. This part needs to be back-patched.
Catversion bump due to change of stored Aggref nodes.
Discussion: <8229.1466109074@sss.pgh.pa.us>
As noted by Andres Freund, we'd accumulated quite a few similar functions
in clauses.c that examine all functions in an expression tree to see if
they satisfy some boolean test. Reduce the duplication by inventing a
function check_functions_in_node() that applies a simple callback function
to each SQL function OID appearing in a given expression node. This also
fixes some arguable oversights; for example, contain_mutable_functions()
did not check aggregate or window functions for mutability. I doubt that
that represents a live bug at the moment, because we don't really consider
mutability for aggregates; but it might someday be one.
I chose to put check_functions_in_node() in nodeFuncs.c because it seemed
like other modules might wish to use it in future. That in turn forced
moving set_opfuncid() et al into nodeFuncs.c, as the alternative was for
nodeFuncs.c to depend on optimizer/setrefs.c which didn't seem very clean.
In passing, teach contain_leaked_vars_walker() about a few more expression
node types it can safely look through, and improve the rather messy and
undercommented code in has_parallel_hazard_walker().
Discussion: <20160527185853.ziol2os2zskahl7v@alap3.anarazel.de>
Needed for cases in which INSERT ... ON CONFLICT appears inside a
recursive CTE item. Per bug #14153 from Thomas Alton.
Patch by Peter Geoghegan, slightly adjusted by me
Report: <20160521232802.22598.13537@wrigleys.postgresql.org>
If RAW_EXPRESSION_COVERAGE_TEST is defined, do a no-op tree walk over
every basic DML statement submitted to parse analysis. If we'd had this
in place earlier, bug #14153 would have been caught by buildfarm testing.
The difficulty is that raw_expression_tree_walker() is only used in
limited cases involving CTEs (particularly recursive ones), so it's
very easy for an oversight in it to not be noticed during testing of a
seemingly-unrelated feature.
The type of error we can expect to catch with this is complete omission
of a node type from raw_expression_tree_walker(), and perhaps also
recursion into a field that doesn't contain a node tree, though that
would be an unlikely mistake. It won't catch failure to add new fields
that need to be recursed into, unfortunately.
I'll go enable this on one or two of my own buildfarm animals once
bug #14153 is dealt with.
Discussion: <27861.1464040417@sss.pgh.pa.us>
In nodeFuncs.c, pgindent wants to introduce spurious indentation into
the definitions of planstate_tree_walker and planstate_walk_subplans.
Fix that by spreading the definition out across several lines, similar
to what is already done for other walker functions in that file.
In execParallel.c, in the definition of SharedExecutorInstrumentation,
pgindent wants to insert more whitespace between the type name and the
member name. That causes it to mangle comments later on the line. Fix
by moving the comments out of line. Now that we have a bit more room,
add some more details that may be useful to the next person reading
this code.
Parallel workers can now partially aggregate the data and pass the
transition values back to the leader, which can combine the partial
results to produce the final answer.
David Rowley, based on earlier work by Haribabu Kommi. Reviewed by
Álvaro Herrera, Tomas Vondra, Amit Kapila, James Sewell, and me.
This logic was missing from ExplainPreScanNode, from which I derived
planstate_tree_walker. But it shouldn't be missing, especially not
from a generic walker function, so add it.
KaiGai Kohei
ExplainPreScanNode knows how to iterate over a generic tree of plan
states; factor that logic out into a separate walker function so that
other code, such as upcoming patches for parallel query, can also use
it.
Patch by me, reviewed by Tom Lane.
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM. (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.) Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type. This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.
Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.
Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.
Back-patch to 9.5 so that we don't have to support the original API
in production.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.
This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.
The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.
The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.
Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage. The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting. The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.
A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.
Needs a catversion bump because stored rules may change.
Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
Add a TABLESAMPLE clause to SELECT statements that allows
user to specify random BERNOULLI sampling or block level
SYSTEM sampling. Implementation allows for extensible
sampling functions to be written, using a standard API.
Basic version follows SQLStandard exactly. Usable
concrete use cases for the sampling API follow in later
commits.
Petr Jelinek
Reviewed by Michael Paquier and Simon Riggs
Specifically the tlist and rti of the pseudo "excluded" relation weren't
properly treated by expression_tree_walker, which lead to errors when
excluded was referenced inside a rule because the varnos where not
properly adjusted. Similar omissions in OffsetVarNodes and
expression_tree_mutator had less impact, but should obviously be fixed
nonetheless.
A couple tests of for ON CONFLICT UPDATE into INSERT rule bearing
relations have been added.
In passing I updated a couple comments.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
We did not need a location tag on NullTest or BooleanTest before, because
no error messages referred directly to their locations. That's planned
to change though, so add these fields in a separate housekeeping commit.
Catversion bump because stored rules may change.
These cases formerly failed with errors about "could not find array type
for data type". Now they yield arrays of the same element type and one
higher dimension.
The implementation involves creating functions with API similar to the
existing accumArrayResult() family. I (tgl) also extended the base family
by adding an initArrayResult() function, which allows callers to avoid
special-casing the zero-inputs case if they just want an empty array as
result. (Not all do, so the previous calling convention remains valid.)
This allowed simplifying some existing code in xml.c and plperl.c.
Ali Akbar, reviewed by Pavel Stehule, significantly modified by me
This SQL-standard feature allows a sub-SELECT yielding multiple columns
(but only one row) to be used to compute the new values of several columns
to be updated. While the same results can be had with an independent
sub-SELECT per column, such a workaround can require a great deal of
duplicated computation.
The standard actually says that the source for a multi-column assignment
could be any row-valued expression. The implementation used here is
tightly tied to our existing sub-SELECT support and can't handle other
cases; the Bison grammar would have some issues with them too. However,
I don't feel too bad about this since other cases can be converted into
sub-SELECTs. For instance, "SET (a,b,c) = row_valued_function(x)" could
be written "SET (a,b,c) = (SELECT * FROM row_valued_function(x))".
Since most of the system thinks AND and OR are N-argument expressions
anyway, let's have the grammar generate a representation of that form when
dealing with input like "x AND y AND z AND ...", rather than generating
a deeply-nested binary tree that just has to be flattened later by the
planner. This avoids stack overflow in parse analysis when dealing with
queries having more than a few thousand such clauses; and in any case it
removes some rather unsightly inconsistencies, since some parts of parse
analysis were generating N-argument ANDs/ORs already.
It's still possible to get a stack overflow with weirdly parenthesized
input, such as "x AND (y AND (z AND ( ... )))", but such cases are not
mainstream usage. The maximum depth of parenthesization is already
limited by Bison's stack in such cases, anyway, so that the limit is
probably fairly platform-independent.
Patch originally by Gurjeet Singh, heavily revised by me
Views which are marked as security_barrier must have their quals
applied before any user-defined quals are called, to prevent
user-defined functions from being able to see rows which the
security barrier view is intended to prevent them from seeing.
Remove the restriction on security barrier views being automatically
updatable by adding a new securityQuals list to the RTE structure
which keeps track of the quals from security barrier views at each
level, independently of the user-supplied quals. When RTEs are
later discovered which have securityQuals populated, they are turned
into subquery RTEs which are marked as security_barrier to prevent
any user-supplied quals being pushed down (modulo LEAKPROOF quals).
Dean Rasheed, reviewed by Craig Ringer, Simon Riggs, KaiGai Kohei
This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()). We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.
Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions. To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c. This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need. There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.
In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates. Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.
Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry. The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others. This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.
This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.
Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).
The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does. There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST(). After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.
Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
Use of this function has spread into the parser and rewriter, so it seems
like time to pull it out of the optimizer and put it into the more central
nodeFuncs module. This eliminates the need to #include optimizer/clauses.h
in most of the calling files, demonstrating that this function was indeed a
bit outside the normal code reference patterns.
For simple views which are automatically updatable, this patch allows
the user to specify what level of checking should be done on records
being inserted or updated. For 'LOCAL CHECK', new tuples are validated
against the conditionals of the view they are being inserted into, while
for 'CASCADED CHECK' the new tuples are validated against the
conditionals for all views involved (from the top down).
This option is part of the SQL specification.
Dean Rasheed, reviewed by Pavel Stehule