We weren't jumbling the merge action list, so wildly different commands
would be considered to use the same query ID. Add that, mention it in
the docs, and some test lines.
Backpatch to 15.
Author: Tatsu <bt22nakamorit@oss.nttdata.com>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Discussion: https://postgr.es/m/d87e391694db75a038abc3b2597828e8@oss.nttdata.com
The reverts the following and makes some associated cleanups:
commit f79b803dc: Common SQL/JSON clauses
commit f4fb45d15: SQL/JSON constructors
commit 5f0adec25: Make STRING an unreserved_keyword.
commit 33a377608: IS JSON predicate
commit 1a36bc9db: SQL/JSON query functions
commit 606948b05: SQL JSON functions
commit 49082c2cc: RETURNING clause for JSON() and JSON_SCALAR()
commit 4e34747c8: JSON_TABLE
commit fadb48b00: PLAN clauses for JSON_TABLE
commit 2ef6f11b0: Reduce running time of jsonb_sqljson test
commit 14d3f24fa: Further improve jsonb_sqljson parallel test
commit a6baa4bad: Documentation for SQL/JSON features
commit b46bcf7a4: Improve readability of SQL/JSON documentation.
commit 112fdb352: Fix finalization for json_objectagg and friends
commit fcdb35c32: Fix transformJsonBehavior
commit 4cd8717af: Improve a couple of sql/json error messages
commit f7a605f63: Small cleanups in SQL/JSON code
commit 9c3d25e17: Fix JSON_OBJECTAGG uniquefying bug
commit a79153b7a: Claim SQL standard compliance for SQL/JSON features
commit a1e7616d6: Rework SQL/JSON documentation
commit 8d9f9634e: Fix errors in copyfuncs/equalfuncs support for JSON node types.
commit 3c633f32b: Only allow returning string types or bytea from json_serialize
commit 67b26703b: expression eval: Fix EEOP_JSON_CONSTRUCTOR and EEOP_JSONEXPR size.
The release notes are also adjusted.
Backpatch to release 15.
Discussion: https://postgr.es/m/40d2c882-bcac-19a9-754d-4299e1d87ac7@postgresql.org
Commit fac1b470a thought we could check for set-returning functions
by testing only the top-level node in an expression tree. This is
wrong in itself, and to make matters worse it encouraged others
to make the same mistake, by exporting tlist.c's special-purpose
IS_SRF_CALL() as a widely-visible macro. I can't find any evidence
that anyone's taken the bait, but it was only a matter of time.
Use expression_returns_set() instead, and stuff the IS_SRF_CALL()
genie back in its bottle, this time with a warning label. I also
added a couple of cross-reference comments.
After a fair amount of fooling around, I've despaired of making
a robust test case that exposes the bug reliably, so no test case
here. (Note that the test case added by fac1b470a is itself
broken, in that it doesn't notice if you remove the code change.
The repro given by the bug submitter currently doesn't fail either
in v15 or HEAD, though I suspect that may indicate an unrelated bug.)
Per bug #17564 from Martijn van Oosterhout. Back-patch to v13,
as the faulty patch was.
Discussion: https://postgr.es/m/17564-c7472c2f90ef2da3@postgresql.org
Commit 64919aaab made pull_up_simple_subquery set rte->subquery = NULL
after doing the deed, so that we don't waste cycles copying a
now-useless subquery tree around. This turns out to create a core dump
hazard in range_table_mutator, which supposes that that field is never
NULL. Apparently none of our own code invokes query_tree_mutator or
range_table_mutator on the top Query after subquery pullup; but it
wouldn't be surprising if outside code does, and anyway I'm working
on a v16 patch that will need it.
We can fix this cleanly by just getting rid of the special-case
handling of this field and treating it more like all the rest.
I think the special case might be left over from a time when
QTW_DONT_COPY_QUERY was the default behavior, but that was eons ago.
Thanks to Dean Rasheed for review.
Discussion: https://postgr.es/m/545569.1656107045@sss.pgh.pa.us
This feature allows jsonb data to be treated as a table and thus used in
a FROM clause like other tabular data. Data can be selected from the
jsonb using jsonpath expressions, and hoisted out of nested structures
in the jsonb to form multiple rows, more or less like an outer join.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zhihong Yu (whose
name I previously misspelled), Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby.
Discussion: https://postgr.es/m/7e2cb85d-24cf-4abb-30a5-1a33715959bd@postgrespro.ru
This patch is extracted from a larger patch that allowed setting the
default returned value from these functions to json or jsonb. That had
problems, but this piece of it is fine. For these functions only json or
jsonb can be specified in the RETURNING clause.
Extracted from an original patch from Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This Patch introduces three SQL standard JSON functions:
JSON() (incorrectly mentioned in my commit message for f4fb45d15c)
JSON_SCALAR()
JSON_SERIALIZE()
JSON() produces json values from text, bytea, json or jsonb values, and
has facilitites for handling duplicate keys.
JSON_SCALAR() produces a json value from any scalar sql value, including
json and jsonb.
JSON_SERIALIZE() produces text or bytea from input which containis or
represents json or jsonb;
For the most part these functions don't add any significant new
capabilities, but they will be of use to users wanting standard
compliant JSON handling.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This introduces the SQL/JSON functions for querying JSON data using
jsonpath expressions. The functions are:
JSON_EXISTS()
JSON_QUERY()
JSON_VALUE()
All of these functions only operate on jsonb. The workaround for now is
to cast the argument to jsonb.
JSON_EXISTS() tests if the jsonpath expression applied to the jsonb
value yields any values. JSON_VALUE() must return a single value, and an
error occurs if it tries to return multiple values. JSON_QUERY() must
return a json object or array, and there are various WRAPPER options for
handling scalar or multi-value results. Both these functions have
options for handling EMPTY and ERROR conditions.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This patch intrdocuces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON as well as on the json and
jsonb types. Each test has an IS and IS NOT variant. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
IS JSON WITH | WITHOUT UNIQUE KEYS
These are mostly self-explanatory, but note that IS JSON WITHOUT UNIQUE
KEYS is true whenever IS JSON is true, and IS JSON WITH UNIQUE KEYS is
true whenever IS JSON is true except it IS JSON OBJECT is true and there
are duplicate keys (which is never the case when applied to jsonb values).
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements. For example,
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.
MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead. MERGE can be used from PL/pgSQL.
MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either. These limitations are likely
fixable with sufficient effort. Rewrite rules are also not supported,
but it's not clear that we'd want to support them.
Author: Pavan Deolasee <pavan.deolasee@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Simon Riggs <simon.riggs@enterprisedb.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions)
Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions)
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: Japin Li <japinli@hotmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql
This patch introduces the SQL/JSON standard constructors for JSON:
JSON()
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
For the most part these functions provide facilities that mimic
existing json/jsonb functions. However, they also offer some useful
additional functionality. In addition to text input, the JSON() function
accepts bytea input, which it will decode and constuct a json value from.
The other functions provide useful options for handling duplicate keys
and null values.
This series of patches will be followed by a consolidated documentation
patch.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.
The following SQL/JSON patches will leverage these.
Nikita Glukhov (who probably deserves an award for perseverance).
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.
The following SQL/JSON patches will leverage these.
Nikita Glukhov (who probably deserves an award for perseverance).
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup. Erik Rijkers, Zihong Yu and
Himanshu Upadhyaya.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
The planner needs to treat GroupingFunc like Aggref for many purposes,
in particular with respect to processing of the argument expressions,
which are not to be evaluated at runtime. A few places hadn't gotten
that memo, notably including subselect.c's processing of outer-level
aggregates. This resulted in assertion failures or wrong plans for
cases in which a GROUPING() construct references an outer aggregation
level.
Also fix missing special cases for GroupingFunc in cost_qual_eval
(resulting in wrong cost estimates for GROUPING(), although it's
not clear that that would affect plan shapes in practice) and in
ruleutils.c (resulting in excess parentheses in pretty-print mode).
Per bug #17088 from Yaoguang Chen. Back-patch to all supported
branches.
Richard Guo, Tom Lane
Discussion: https://postgr.es/m/17088-e33882b387de7f5c@postgresql.org
Before, SQL-level boolean constants were represented by a string with
a cast, and internal Boolean values in DDL commands were usually
represented by Integer nodes. This takes the place of both of these
uses, making the intent clearer and having some amount of type safety.
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/8c1a2e37-c68d-703c-5a83-7a6077f4f997@enterprisedb.com
Since this function is defined to accept pg_node_tree values, it could
get applied to any nodetree that can appear in a cataloged pg_node_tree
column. Some such cases can't be supported --- for example, its API
doesn't allow providing referents for more than one relation --- but
we should try to throw a user-facing error rather than an internal
error when encountering such a case.
In support of this, extend expression_tree_walker/mutator to be sure
they'll work on any such node tree (which basically means adding
support for relpartbound node types). That allows us to run pull_varnos
and check for the case of multiple relations before we start processing
the tree. The alternative of changing the low-level error thrown for an
out-of-range varno isn't appealing, because that could mask actual bugs
in other usages of ruleutils.
Per report from Justin Pryzby. This is basically cosmetic, so no
back-patch.
Discussion: https://postgr.es/m/20211219205422.GT17618@telsasoft.com
The Value node struct is a weird construct. It is its own node type,
but most of the time, it actually has a node type of Integer, Float,
String, or BitString. As a consequence, the struct name and the node
type don't match most of the time, and so it has to be treated
specially a lot. There doesn't seem to be any value in the special
construct. There is very little code that wants to accept all Value
variants but nothing else (and even if it did, this doesn't provide
any convenient way to check it), and most code wants either just one
particular node type (usually String), or it accepts a broader set of
node types besides just Value.
This change removes the Value struct and node type and replaces them
by separate Integer, Float, String, and BitString node types that are
proper node types and structs of their own and behave mostly like
normal node types.
Also, this removes the T_Null node tag, which was previously also a
possible variant of Value but wasn't actually used outside of the
Value contained in A_Const. Replace that by an isnull field in
A_Const.
Reviewed-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org>
Reviewed-by: Kyotaro Horiguchi <horikyota.ntt@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/5ba6bc5b-3f95-04f2-2419-f8ddb4c046fb@enterprisedb.com
There were some comments in nodeFuncs.c that, depending on your
interpretation of the word "result", could lead you to believe that the
comments were badly copied and pasted from somewhere else. If you thought
of "result" as the return value of the function that the comment is
written in, then you'd be misled. However, if you'd correctly
interpreted "result" to mean the result type of the given node type,
you'd not have seen any issues.
Here we do a small cleanup to try to prevent any future
misinterpretations. Per wording suggestion from Tom Lane.
Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/CAApHDvp+Bw=2Qiu5=uXMKfC7gd0+B=4JvexVgGJU=am2g9a1CA@mail.gmail.com
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
There is now a per-column COMPRESSION option which can be set to pglz
(the default, and the only option in up until now) or lz4. Or, if you
like, you can set the new default_toast_compression GUC to lz4, and
then that will be the default for new table columns for which no value
is specified. We don't have lz4 support in the PostgreSQL code, so
to use lz4 compression, PostgreSQL must be built --with-lz4.
In general, TOAST compression means compression of individual column
values, not the whole tuple, and those values can either be compressed
inline within the tuple or compressed and then stored externally in
the TOAST table, so those properties also apply to this feature.
Prior to this commit, a TOAST pointer has two unused bits as part of
the va_extsize field, and a compessed datum has two unused bits as
part of the va_rawsize field. These bits are unused because the length
of a varlena is limited to 1GB; we now use them to indicate the
compression type that was used. This means we only have bit space for
2 more built-in compresison types, but we could work around that
problem, if necessary, by introducing a new vartag_external value for
any further types we end up wanting to add. Hopefully, it won't be
too important to offer a wide selection of algorithms here, since
each one we add not only takes more coding but also adds a build
dependency for every packager. Nevertheless, it seems worth doing
at least this much, because LZ4 gets better compression than PGLZ
with less CPU usage.
It's possible for LZ4-compressed datums to leak into composite type
values stored on disk, just as it is for PGLZ. It's also possible for
LZ4-compressed attributes to be copied into a different table via SQL
commands such as CREATE TABLE AS or INSERT .. SELECT. It would be
expensive to force such values to be decompressed, so PostgreSQL has
never done so. For the same reasons, we also don't force recompression
of already-compressed values even if the target table prefers a
different compression method than was used for the source data. These
architectural decisions are perhaps arguable but revisiting them is
well beyond the scope of what seemed possible to do as part of this
project. However, it's relatively cheap to recompress as part of
VACUUM FULL or CLUSTER, so this commit adjusts those commands to do
so, if the configured compression method of the table happens not to
match what was used for some column value stored therein.
Dilip Kumar. The original patches on which this work was based were
written by Ildus Kurbangaliev, and those were patches were based on
even earlier work by Nikita Glukhov, but the design has since changed
very substantially, since allow a potentially large number of
compression methods that could be added and dropped on a running
system proved too problematic given some of the architectural issues
mentioned above; the choice of which specific compression method to
add first is now different; and a lot of the code has been heavily
refactored. More recently, Justin Przyby helped quite a bit with
testing and reviewing and this version also includes some code
contributions from him. Other design input and review from Tomas
Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander
Korotkov, and me.
Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain
Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
This adds the SQL standard feature that adds the SEARCH and CYCLE
clauses to recursive queries to be able to do produce breadth- or
depth-first search orders and detect cycles. These clauses can be
rewritten into queries using existing syntax, and that is what this
patch does in the rewriter.
Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
Invent new RawParseModes that allow the core grammar to handle
pl/pgsql expressions and assignments directly, and thereby get rid
of a lot of hackery in pl/pgsql's parser. This moves a good deal
of knowledge about pl/pgsql into the core code: notably, we have to
invent a CoercionContext that matches pl/pgsql's (rather dubious)
historical behavior for assignment coercions. That's getting away
from the original idea of pl/pgsql as an arm's-length extension of
the core, but really we crossed that bridge a long time ago.
The main advantage of doing this is that we can now use the core
parser to generate FieldStore and/or SubscriptingRef nodes to handle
assignments to pl/pgsql variables that are records or arrays. That
fixes a number of cases that had never been implemented in pl/pgsql
assignment, such as nested records and array slicing, and it allows
pl/pgsql assignment to support the datatype-specific subscripting
behaviors introduced in commit c7aba7c14.
There are cosmetic benefits too: when a syntax error occurs in a
pl/pgsql expression, the error report no longer includes the confusing
"SELECT" keyword that used to get prefixed to the expression text.
Also, there seem to be some small speed gains.
Discussion: https://postgr.es/m/4165684.1607707277@sss.pgh.pa.us
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means. Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers. (This patch provides no such new
features, though; it only lays the foundation for them.)
To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler. On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines. (Thus, essentially
no new run-time overhead should be caused by this patch. Indeed,
there is room to remove some overhead by supplying specialized
execution routines. This patch does a little bit in that line,
but more could be done.)
Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.
One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER. For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.
This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.
Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule
Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
We have a dozen or so places that need to iterate over all but the
first cell of a List. Prior to v13 this was typically written as
for_each_cell(lc, lnext(list_head(list)))
Commit 1cff1b95a changed these to
for_each_cell(lc, list, list_second_cell(list))
This patch introduces a new macro for_each_from() which expresses
the start point as a list index, allowing these to be written as
for_each_from(lc, list, 1)
This is marginally more efficient, since ForEachState.i can be
initialized directly instead of backing into it from a ListCell
address. It also seems clearer and less typo-prone.
Some of the remaining uses of for_each_cell() look like they could
profitably be changed to for_each_from(), but here I confined myself
to changing uses of list_second_cell().
Also, fix for_each_cell_setup() and for_both_cell_setup() to
const-ify their arguments; that's a simple oversight in 1cff1b95a.
Back-patch into v13, on the grounds that (1) the const-ification
is a minor bug fix, and (2) it's better for back-patching purposes
if we only have two ways to write these loops rather than three.
In HEAD, also remove list_third_cell() and list_fourth_cell(),
which were also introduced in 1cff1b95a, and are unused as of
cc99baa43. It seems unlikely that any third-party code would
have started to use them already; anyone who has can be directed
to list_nth_cell instead.
Discussion: https://postgr.es/m/CAApHDvpo1zj9KhEpU2cCRZfSM3Q6XGdhzuAS2v79PH7WJBkYVA@mail.gmail.com
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue. Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.
An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value. So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.
Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.
Back-patch to v12, like the previous patch. While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem. In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.
Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
The RTE_RESULT simplification logic added by commit 4be058fe9 had a
flaw: it would collapse out a RTE_RESULT that is due to compute a
PlaceHolderVar, and reassign the PHV to the parent join level, even if
another input relation of the join contained a lateral reference to
the PHV. That can't work because the PHV would be computed too late.
In practice it led to failures of internal sanity checks later in
planning (either assertion failures or errors such as "failed to
construct the join relation").
To fix, add code to check for the presence of such PHVs in relevant
portions of the query tree. Notably, this required refactoring
range_table_walker so that a caller could ask to walk individual RTEs
not the whole list. (It might be a good idea to refactor
range_table_mutator in the same way, if only to keep those functions
looking similar; but I didn't do so here as it wasn't necessary for
the bug fix.)
This exercise also taught me that find_dependent_phvs(), as it stood,
could only safely be used on the entire Query, not on subtrees.
Adjust its API to reflect that; which in passing allows it to have
a fast path for the common case of no PHVs anywhere.
Per report from Will Leinweber. Back-patch to v12 where the bug
was introduced.
Discussion: https://postgr.es/m/CALLb-4xJMd4GZt2YCecMC95H-PafuWNKcmps4HLRx2NHNBfB4g@mail.gmail.com
This provides for cheaper mapping of child columns back to parent
columns. The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.
Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.
In the passing, removed a couple of duplicate inclusions.
Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
query_tree_walker and query_tree_mutator were skipping the
windowClause of the query, without regard for the fact that the
startOffset and endOffset in a WindowClause node are expression trees
that need to be processed. This was an oversight in commit ec4be2ee6
from 2010 which added the expression fields; the main symptom is that
function parameters in window frame clauses don't work in inlined
functions.
Fix (as conservatively as possible since this needs to not break
existing out-of-tree callers) and add tests.
Backpatch all the way, since this has been broken since 9.0.
Per report from Alastair McKinley; fix by me with kibitzing and review
from Tom Lane.
Discussion: https://postgr.es/m/DB6PR0202MB2904E7FDDA9D81504D1E8C68E3800@DB6PR0202MB2904.eurprd02.prod.outlook.com
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link. We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells. That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.
In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links. Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header. (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)
Of course this is not without downsides. The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.
For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state. We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value. (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.
The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext(). The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell(). However, we no longer
need a previous-cell pointer to delete a list cell efficiently. Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)
There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents. To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen. This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).
There are two notable API differences from the previous code:
* lnext() now requires the List's header pointer in addition to the
current cell's address.
* list_delete_cell() no longer requires a previous-cell argument.
These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.
Programmers should be aware of these significant performance changes:
* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.
* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.) Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long. Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.
* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index. These have the
data-movement penalty explained above, but there's no search penalty.
* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists. The second argument is
now declared "const List *" to reflect that it isn't changed.
This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests. As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.
Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit. Code using those should have been gone a dozen years ago.
Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes. This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.
We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition. This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator. To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo(). For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.
Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original. This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.
Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.
This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state. I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.
Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
This change allows callers of query_tree_walker() to choose whether
to visit an RTE before or after visiting the contents of the RTE
(i.e., prefix or postfix tree order). All existing users of
QTW_EXAMINE_RTES want the QTW_EXAMINE_RTES_BEFORE behavior, but
an upcoming patch will want QTW_EXAMINE_RTES_AFTER, and it seems
like a potentially useful change on its own.
Andreas Karlsson (extracted from CTE inlining patch)
Discussion: https://postgr.es/m/8810.1542402910@sss.pgh.pa.us
The "name" comparison operators now all support collations, making them
functionally equivalent to "text" comparisons, except for the different
physical representation of the datatype. They do, in fact, mostly share
the varstr_cmp and varstr_sortsupport infrastructure, which has been
slightly enlarged to handle the case.
To avoid changes in the default behavior of the datatype, set name's
typcollation to C_COLLATION_OID not DEFAULT_COLLATION_OID, so that
by default comparisons to a name value will continue to use strcmp
semantics. (This would have been the case for system catalog columns
anyway, because of commit 6b0faf723, but doing this makes it true for
user-created name columns as well. In particular, this avoids
locale-dependent changes in our regression test results.)
In consequence, tweak a couple of places that made assumptions about
collatable base types always having typcollation DEFAULT_COLLATION_OID.
I have not, however, attempted to relax the restriction that user-
defined collatable types must have that. Hence, "name" doesn't
behave quite like a user-defined type; it acts more like a domain
with COLLATE "C". (Conceivably, if we ever get rid of the need for
catalog name columns to be fixed-length, "name" could actually become
such a domain over text. But that'd be a pretty massive undertaking,
and I'm not volunteering.)
Discussion: https://postgr.es/m/15938.1544377821@sss.pgh.pa.us
Although copyfuncs.c has a check_stack_depth call in its recursion,
equalfuncs.c, outfuncs.c, and readfuncs.c lacked one. This seems
unwise.
Likewise fix planstate_tree_walker(), in branches where that exists.
Discussion: https://postgr.es/m/30253.1544286631@sss.pgh.pa.us
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning. The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.
At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.
This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.
Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com