Some code is moved from partition.c, which has grown very quickly lately;
splitting the executor parts out might help to keep it from getting
totally out of control. Other code is moved from execMain.c. All is
moved to a new file execPartition.c. get_partition_for_tuple now has
a new interface that more clearly separates executor concerns from
generic concerns.
Amit Langote. A slight comment tweak by me.
Discussion: http://postgr.es/m/1f0985f8-3b61-8bc4-4350-baa6d804cb6d@lab.ntt.co.jp
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
It turns out we misdiagnosed what the real problem was. Revert the
previous changes, because they may have worse consequences going
forward. A better fix is forthcoming.
The simplistic test case is kept, though disabled.
Discussion: https://postgr.es/m/20171102112019.33wb7g5wp4zpjelu@alap3.anarazel.de
If we try to run a parallel plan in serial mode because, for example,
it's going to be scanned via a cursor, but for some reason we're
already in parallel mode (for example because an outer query is
running in parallel), we'd incorrectly try to launch workers.
Fix by adding a flag to the EState, so that we can be certain that
ExecutePlan() and ExecGather()/ExecGatherMerge() will have the same
idea about whether we are executing serially or in parallel.
Report and fix by Amit Kapila with help from Kuntal Ghosh. A few
tweaks by me.
Discussion: http://postgr.es/m/CAA4eK1+_BuZrmVCeua5Eqnm4Co9DAXdM5HPAOE2J19ePbR912Q@mail.gmail.com
The previous convention doesn't lend itself to creating ResultRelInfos
lazily, as we already do in ExecGetTriggerResultRel. This patch
doesn't make anything lazier than before, but the pending patch for
UPDATE tuple routing proposes to do so (and there might be other
opportunities as well).
Amit Khandekar with some adjustments by me.
Discussion: http://postgr.es/m/CA+TgmoYPVP9Lyf6vUFA5DwxS4c--x6LOj2y36BsJaYtp62eXPQ@mail.gmail.com
When some tuple versions in an update chain are frozen due to them being
older than freeze_min_age, the xmax/xmin trail can become broken. This
breaks HOT (and probably other things). A subsequent VACUUM can break
things in more serious ways, such as leaving orphan heap-only tuples
whose root HOT redirect items were removed. This can be seen because
index creation (or REINDEX) complain like
ERROR: XX000: failed to find parent tuple for heap-only tuple at (0,7) in table "t"
Because of relfrozenxid contraints, we cannot avoid the freezing of the
early tuples, so we must cope with the results: whenever we see an Xmin
of FrozenTransactionId, consider it a match for whatever the previous
Xmax value was.
This problem seems to have appeared in 9.3 with multixact changes,
though strictly speaking it seems unrelated.
Since 9.4 we have commit 37484ad2a "Change the way we mark tuples as
frozen", so the fix is simple: just compare the raw Xmin (still stored
in the tuple header, since freezing merely set an infomask bit) to the
Xmax. But in 9.3 we rewrite the Xmin value to FrozenTransactionId, so
the original value is lost and we have nothing to compare the Xmax with.
To cope with that case we need to compare the Xmin with FrozenXid,
assume it's a match, and hope for the best. Sadly, since you can
pg_upgrade a 9.3 instance containing half-frozen pages to newer
releases, we need to keep the old check in newer versions too, which
seems a bit brittle; I hope we can somehow get rid of that.
I didn't optimize the new function for performance. The new coding is
probably a bit slower than before, since there is a function call rather
than a straight comparison, but I'd rather have it work correctly than
be fast but wrong.
This is a followup after 20b655224249 fixed a few related problems.
Apparently, in 9.6 and up there are more ways to get into trouble, but
in 9.3 - 9.5 I cannot reproduce a problem anymore with this patch, so
there must be a separate bug.
Reported-by: Peter Geoghegan
Diagnosed-by: Peter Geoghegan, Michael Paquier, Daniel Wood,
Yi Wen Wong, Álvaro
Discussion: https://postgr.es/m/CAH2-Wznm4rCrhFAiwKPWTpEw2bXDtgROZK7jWWGucXeH3D1fmA@mail.gmail.com
Haribabu Kommi, reviewed by Dilip Kumar and Rafia Sabih. Various
cosmetic changes by me to explain why this appears to be safe but
allowing inserts in parallel mode in general wouldn't be. Also, I
removed the REFRESH MATERIALIZED VIEW case from Haribabu's patch,
since I'm not convinced that case is OK, and hacked on the
documentation somewhat.
Discussion: http://postgr.es/m/CAJrrPGdo5bak6qnPWe8Kpi8g_jfQEs-G4SYmG9y+OFaw2-dPvA@mail.gmail.com
The standard says that all changes of the same kind (insert, update, or
delete) caused in one table by a single SQL statement should be reported
in a single transition table; and by that, they mean to include foreign key
enforcement actions cascading from the statement's direct effects. It's
also reasonable to conclude that if the standard had wCTEs, they would say
that effects of wCTEs applying to the same table as each other or the outer
statement should be merged into one transition table. We weren't doing it
like that.
Hence, arrange to merge tuples from multiple update actions into a single
transition table as much as we can. There is a problem, which is that if
the firing of FK enforcement triggers and after-row triggers with
transition tables is interspersed, we might need to report more tuples
after some triggers have already seen the transition table. It seems like
a bad idea for the transition table to be mutable between trigger calls.
There's no good way around this without a major redesign of the FK logic,
so for now, resolve it by opening a new transition table each time this
happens.
Also, ensure that AFTER STATEMENT triggers fire just once per statement,
or once per transition table when we're forced to make more than one.
Previous versions of Postgres have allowed each FK enforcement query
to cause an additional firing of the AFTER STATEMENT triggers for the
referencing table, but that's certainly not per spec. (We're still
doing multiple firings of BEFORE STATEMENT triggers, though; is that
something worth changing?)
Also, forbid using transition tables with column-specific UPDATE triggers.
The spec requires such transition tables to show only the tuples for which
the UPDATE trigger would have fired, which means maintaining multiple
transition tables or else somehow filtering the contents at readout.
Maybe someday we'll bother to support that option, but it looks like a
lot of trouble for a marginal feature.
The transition tables are now managed by the AfterTriggers data structures,
rather than being directly the responsibility of ModifyTable nodes. This
removes a subtransaction-lifespan memory leak introduced by my previous
band-aid patch 3c4359521.
In passing, refactor the AfterTriggers data structures to reduce the
management overhead for them, by using arrays of structs rather than
several parallel arrays for per-query-level and per-subtransaction state.
I failed to resist the temptation to do some copy-editing on the SGML
docs about triggers, above and beyond merely documenting the effects
of this patch.
Back-patch to v10, because we don't want the semantics of transition
tables to change post-release.
Patch by me, with help and review from Thomas Munro.
Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
It is equivalent in ANSI C to write (*funcptr) () and funcptr(). These
two styles have been applied inconsistently. After discussion, we'll
use the more verbose style for plain function pointer variables, to make
it clear that it's a variable, and the shorter style when the function
pointer is in a struct (s.func() or s->func()), because then it's clear
that it's not a plain function name, and otherwise the excessive
punctuation makes some of those invocations hard to read.
Discussion: https://www.postgresql.org/message-id/f52c16db-14ed-757d-4b48-7ef360b1631d@2ndquadrant.com
This doesn't allow routing tuple to the foreign partitions themselves,
but it permits tuples to be routed to regular partitions despite the
presence of foreign partitions in the same inheritance hierarchy.
Etsuro Fujita, reviewed by Amit Langote and by me.
Discussion: http://postgr.es/m/bc3db4c1-1693-3b8a-559f-33ad2b50b7ad@lab.ntt.co.jp
This is a mechanical change in preparation for a later commit that
will change the layout of TupleDesc. Introducing a macro to abstract
the details of where attributes are stored will allow us to change
that in separate step and revise it in future.
Author: Thomas Munro, editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
Add a new EState member es_leaf_result_relations, so that the trigger
code knows about ResultRelInfos created by tuple routing. Also make
sure ExplainPrintTriggers knows about partition-related
ResultRelInfos.
Etsuro Fujita, reviewed by Amit Langote
Discussion: http://postgr.es/m/57163e18-8e56-da83-337a-22f2c0008051@lab.ntt.co.jp
Instead, lock them in the caller using find_all_inheritors so that
they get locked in the standard order, minimizing deadlock risks.
Also in RelationGetPartitionDispatchInfo, avoid opening tables which
are not partitioned; there's no need.
Amit Langote, reviewed by Ashutosh Bapat and Amit Khandekar
Discussion: http://postgr.es/m/91b36fa1-c197-b72f-ca6e-56c593bae68c@lab.ntt.co.jp
Before, we always used a dummy value of 1, but that's not right when
the partitioned table being modified is inside of a WITH clause
rather than part of the main query.
Amit Langote, reported and reviewd by Etsuro Fujita, with a comment
change by me.
Discussion: http://postgr.es/m/ee12f648-8907-77b5-afc0-2980bcb0aa37@lab.ntt.co.jp
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Since tuple-routing implicitly checks the partitioning constraints
at least for the levels of the partitioning hierarchy it traverses,
there's normally no need to revalidate the partitioning constraint
after performing tuple routing. However, if there's a BEFORE trigger
on the target partition, it could modify the tuple, causing the
partitioning constraint to be violated. Catch that case.
Also, instead of checking the root table's partition constraint after
tuple-routing, check it beforehand. Otherwise, the rules for when
the partitioning constraint gets checked get too complicated, because
you sometimes have to check part of the constraint but not all of it.
This effectively reverts commit 39162b2030fb0a35a6bb28dc636b5a71b8df8d1c
in favor of a different approach altogether.
Report by me. Initial debugging by Jeevan Ladhe. Patch by Amit
Langote, reviewed by me.
Discussion: http://postgr.es/m/CA+Tgmoa9DTgeVOqopieV8d1QRpddmP65aCdxyjdYDoEO5pS5KA@mail.gmail.com
Even though no actual tuples are ever inserted into a partitioned
table (the actual tuples are in the partitions, not the partitioned
table itself), we still need to have a ResultRelInfo for the
partitioned table, or per-statement triggers won't get fired.
Amit Langote, per a report from Rajkumar Raghuwanshi. Reviewed by me.
Discussion: http://postgr.es/m/CAKcux6%3DwYospCRY2J4XEFuVy0L41S%3Dfic7rmkbsU-GXhhSbmBg%40mail.gmail.com
We decided in f1b4c771ea74f42447dccaed42ffcdcccf3aa694 to pass the
original slot to ExecConstraints(), but that breaks when there are
BEFORE ROW triggers involved. So we need to do reverse-map the tuples
back to the original descriptor instead, as Amit originally proposed.
Amit Langote, reviewed by Ashutosh Bapat. One overlooked comment
fixed by me.
Discussion: http://postgr.es/m/b3a17254-6849-e542-2353-bde4e880b6a4@lab.ntt.co.jp
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.
This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.
The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
out operation metadata sequentially; including the avoidance of
nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
constant re-checks at evaluation time
Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.
The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
overhead of expression evaluation, by caching state in prepared
statements. That'd be helpful in OLTPish scenarios where
initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
been made here too.
The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
initialization, whereas previously they were done during
execution. In edge cases this can lead to errors being raised that
previously wouldn't have been, e.g. a NULL array being coerced to a
different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
during expression initialization, previously it was re-built
every time a domain check was evaluated. For normal queries this
doesn't change much, but e.g. for plpgsql functions, which caches
ExprStates, the old set could stick around longer. The behavior
around might still change.
Author: Andres Freund, with significant changes by Tom Lane,
changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
Previously, it was unsafe to execute a plan in parallel if
ExecutorRun() might be called with a non-zero row count. However,
it's quite easy to fix things up so that we can support that case,
provided that it is known that we will never call ExecutorRun() a
second time for the same QueryDesc. Add infrastructure to signal
this, and cross-checks to make sure that a caller who claims this is
true doesn't later reneg.
While that pattern never happens with queries received directly from a
client -- there's no way to know whether multiple Execute messages
will be sent unless the first one requests all the rows -- it's pretty
common for queries originating from procedural languages, which often
limit the result to a single tuple or to a user-specified number of
tuples.
This commit doesn't actually enable parallelism in any additional
cases, because currently none of the places that would be able to
benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the
first place, but it makes it much more palatable to pass
CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it
eliminates some cases where we'd end up having to run the parallel
plan serially.
Patch by me, based on some ideas from Rafia Sabih and corrected by
Rafia Sabih based on feedback from Dilip Kumar and myself.
Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
Partitioned tables do not contain any data; only their unpartitioned
descendents need to be scanned. However, the partitioned tables still
need to be locked, even though they're not scanned. To make that
work, Append and MergeAppend relations now need to carry a list of
(unscanned) partitioned relations that must be locked, and InitPlan
must lock all partitioned result relations.
Aside from the obvious advantage of avoiding some work at execution
time, this has two other advantages. First, it may improve the
planner's decision-making in some cases since the empty relation
might throw things off. Second, it paves the way to getting rid of
the storage for partitioned tables altogether.
Amit Langote, reviewed by me.
Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
Currently, the whole row is shown without column names. Instead,
adopt a style similar to _bt_check_unique() in ExecFindPartition()
and show the failing key: (key1, ...) = (val1, ...).
Amit Langote, per a complaint from Simon Riggs. Reviewed by me;
I also adjusted the grammar in one of the comments.
Discussion: http://postgr.es/m/9f9dc7ae-14f0-4a25-5485-964d9bfc19bd@lab.ntt.co.jp
With this change, you can see the query that a parallel worker is
executing in pg_stat_activity, and if the worker crashes you can
see what query it was executing when it crashed.
Rafia Sabih, reviewed by Kuntal Ghosh and Amit Kapila and slightly
revised by me.
In 2ac3ef7a01df859c62d0a02333b646d65eaec5ff, we changed things so that
it's possible for a different TupleTableSlot to be used for partitioned
tables at successively lower levels. If we do end up changing the slot
from the original, we must update ecxt_scantuple to point to the new one
for partition key of the tuple to be computed correctly.
Reported by Rajkumar Raghuwanshi. Patch by Amit Langote.
Discussion: http://postgr.es/m/CAKcux6%3Dm1qyqB2k6cjniuMMrYXb75O-MB4qGQMu8zg-iGGLjDw%40mail.gmail.com
We've accumulated quite a bit of stuff with which pgindent is not
quite happy in this code; clean it up to provide a less-annoying base
for future pgindent runs.
In ExecInsert(), do not switch back to the root partitioned table
ResultRelInfo until after we finish ExecProcessReturning(), so that
RETURNING projection is done using the partition's descriptor. For
the projection to work correctly, we must initialize the same for each
leaf partition during ModifyTableState initialization.
Amit Langote
When a tuple is inherited into a partitioning root, no partition
constraints need to be enforced; when it is inserted into a leaf, the
parent's partitioning quals needed to be enforced. The previous
coding got both of those cases right. When a tuple is inserted into
an intermediate level of the partitioning hierarchy (i.e. a table
which is both a partition itself and in turn partitioned), it must
enforce the partitioning qual inherited from its parent. That case
got overlooked; repair.
Amit Langote
RelationGetPartitionQual() and generate_partition_qual() are always
called with recurse = true, so we don't need an argument for that.
Extracted by me from a larger patch by Amit Langote.
After a tuple is routed to a partition, it has been converted from the
root table's row type to the partition's row type. ExecConstraints
needs to report the failure using the original tuple and the parent's
tuple descriptor rather than the ones for the selected partition.
Amit Langote
Commit 2ac3ef7a01df859c62d0a02333b646d65eaec5ff added a TupleTapleSlot
for partition tuple slot to EState (es_partition_tuple_slot) but it's
more logical to have it as part of ModifyTableState
(mt_partition_tuple_slot) and CopyState (partition_tuple_slot).
Discussion: http://postgr.es/m/1bd459d9-4c0c-197a-346e-e5e59e217d97@lab.ntt.co.jp
Amit Langote, per a gripe from me
Commit 4212cb73262bbdd164727beffa4c4744b4ead92d rendered a comment
in execMain.c incorrect. Per complaint from Tom Lane, repair.
Patch from Amit Kapila, per wording suggested by Tom Lane and me.
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own. The children are called
partitions and contain all of the actual data. Each partition has an
implicit partitioning constraint. Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed. Partitions
can't have extra columns and may not allow nulls unless the parent
does. Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.
Currently, tables can be range-partitioned or list-partitioned. List
partitioning is limited to a single column, but range partitioning can
involve multiple columns. A partitioning "column" can be an
expression.
Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations. The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.
Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.