mirror of
https://github.com/postgres/postgres.git
synced 2025-04-21 12:05:57 +03:00
This is just to have a clean base state for testing of Piotr Stefaniak's latest version of FreeBSD indent. I fixed up a couple of places where pgindent would have changed format not-nicely. perltidy not included. Discussion: https://postgr.es/m/VI1PR03MB119959F4B65F000CA7CD9F6BF2CC0@VI1PR03MB1199.eurprd03.prod.outlook.com
3434 lines
101 KiB
C
3434 lines
101 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execMain.c
|
|
* top level executor interface routines
|
|
*
|
|
* INTERFACE ROUTINES
|
|
* ExecutorStart()
|
|
* ExecutorRun()
|
|
* ExecutorFinish()
|
|
* ExecutorEnd()
|
|
*
|
|
* These four procedures are the external interface to the executor.
|
|
* In each case, the query descriptor is required as an argument.
|
|
*
|
|
* ExecutorStart must be called at the beginning of execution of any
|
|
* query plan and ExecutorEnd must always be called at the end of
|
|
* execution of a plan (unless it is aborted due to error).
|
|
*
|
|
* ExecutorRun accepts direction and count arguments that specify whether
|
|
* the plan is to be executed forwards, backwards, and for how many tuples.
|
|
* In some cases ExecutorRun may be called multiple times to process all
|
|
* the tuples for a plan. It is also acceptable to stop short of executing
|
|
* the whole plan (but only if it is a SELECT).
|
|
*
|
|
* ExecutorFinish must be called after the final ExecutorRun call and
|
|
* before ExecutorEnd. This can be omitted only in case of EXPLAIN,
|
|
* which should also omit ExecutorRun.
|
|
*
|
|
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/execMain.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/transam.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/namespace.h"
|
|
#include "catalog/partition.h"
|
|
#include "catalog/pg_publication.h"
|
|
#include "commands/matview.h"
|
|
#include "commands/trigger.h"
|
|
#include "executor/execdebug.h"
|
|
#include "foreign/fdwapi.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "parser/parsetree.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "storage/bufmgr.h"
|
|
#include "storage/lmgr.h"
|
|
#include "tcop/utility.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/rls.h"
|
|
#include "utils/ruleutils.h"
|
|
#include "utils/snapmgr.h"
|
|
#include "utils/tqual.h"
|
|
|
|
|
|
/* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */
|
|
ExecutorStart_hook_type ExecutorStart_hook = NULL;
|
|
ExecutorRun_hook_type ExecutorRun_hook = NULL;
|
|
ExecutorFinish_hook_type ExecutorFinish_hook = NULL;
|
|
ExecutorEnd_hook_type ExecutorEnd_hook = NULL;
|
|
|
|
/* Hook for plugin to get control in ExecCheckRTPerms() */
|
|
ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL;
|
|
|
|
/* decls for local routines only used within this module */
|
|
static void InitPlan(QueryDesc *queryDesc, int eflags);
|
|
static void CheckValidRowMarkRel(Relation rel, RowMarkType markType);
|
|
static void ExecPostprocessPlan(EState *estate);
|
|
static void ExecEndPlan(PlanState *planstate, EState *estate);
|
|
static void ExecutePlan(EState *estate, PlanState *planstate,
|
|
bool use_parallel_mode,
|
|
CmdType operation,
|
|
bool sendTuples,
|
|
uint64 numberTuples,
|
|
ScanDirection direction,
|
|
DestReceiver *dest,
|
|
bool execute_once);
|
|
static bool ExecCheckRTEPerms(RangeTblEntry *rte);
|
|
static bool ExecCheckRTEPermsModified(Oid relOid, Oid userid,
|
|
Bitmapset *modifiedCols,
|
|
AclMode requiredPerms);
|
|
static void ExecCheckXactReadOnly(PlannedStmt *plannedstmt);
|
|
static char *ExecBuildSlotValueDescription(Oid reloid,
|
|
TupleTableSlot *slot,
|
|
TupleDesc tupdesc,
|
|
Bitmapset *modifiedCols,
|
|
int maxfieldlen);
|
|
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
|
|
Datum *values,
|
|
bool *isnull,
|
|
int maxfieldlen);
|
|
static void EvalPlanQualStart(EPQState *epqstate, EState *parentestate,
|
|
Plan *planTree);
|
|
static void ExecPartitionCheck(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate);
|
|
|
|
/*
|
|
* Note that GetUpdatedColumns() also exists in commands/trigger.c. There does
|
|
* not appear to be any good header to put it into, given the structures that
|
|
* it uses, so we let them be duplicated. Be sure to update both if one needs
|
|
* to be changed, however.
|
|
*/
|
|
#define GetInsertedColumns(relinfo, estate) \
|
|
(rt_fetch((relinfo)->ri_RangeTableIndex, (estate)->es_range_table)->insertedCols)
|
|
#define GetUpdatedColumns(relinfo, estate) \
|
|
(rt_fetch((relinfo)->ri_RangeTableIndex, (estate)->es_range_table)->updatedCols)
|
|
|
|
/* end of local decls */
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorStart
|
|
*
|
|
* This routine must be called at the beginning of any execution of any
|
|
* query plan
|
|
*
|
|
* Takes a QueryDesc previously created by CreateQueryDesc (which is separate
|
|
* only because some places use QueryDescs for utility commands). The tupDesc
|
|
* field of the QueryDesc is filled in to describe the tuples that will be
|
|
* returned, and the internal fields (estate and planstate) are set up.
|
|
*
|
|
* eflags contains flag bits as described in executor.h.
|
|
*
|
|
* NB: the CurrentMemoryContext when this is called will become the parent
|
|
* of the per-query context used for this Executor invocation.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorStart is called. Such a plugin would
|
|
* normally call standard_ExecutorStart().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorStart(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
if (ExecutorStart_hook)
|
|
(*ExecutorStart_hook) (queryDesc, eflags);
|
|
else
|
|
standard_ExecutorStart(queryDesc, eflags);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorStart(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks: queryDesc must not be started already */
|
|
Assert(queryDesc != NULL);
|
|
Assert(queryDesc->estate == NULL);
|
|
|
|
/*
|
|
* If the transaction is read-only, we need to check if any writes are
|
|
* planned to non-temporary tables. EXPLAIN is considered read-only.
|
|
*
|
|
* Don't allow writes in parallel mode. Supporting UPDATE and DELETE
|
|
* would require (a) storing the combocid hash in shared memory, rather
|
|
* than synchronizing it just once at the start of parallelism, and (b) an
|
|
* alternative to heap_update()'s reliance on xmax for mutual exclusion.
|
|
* INSERT may have no such troubles, but we forbid it to simplify the
|
|
* checks.
|
|
*
|
|
* We have lower-level defenses in CommandCounterIncrement and elsewhere
|
|
* against performing unsafe operations in parallel mode, but this gives a
|
|
* more user-friendly error message.
|
|
*/
|
|
if ((XactReadOnly || IsInParallelMode()) &&
|
|
!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
|
|
ExecCheckXactReadOnly(queryDesc->plannedstmt);
|
|
|
|
/*
|
|
* Build EState, switch into per-query memory context for startup.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
queryDesc->estate = estate;
|
|
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* Fill in external parameters, if any, from queryDesc; and allocate
|
|
* workspace for internal parameters
|
|
*/
|
|
estate->es_param_list_info = queryDesc->params;
|
|
|
|
if (queryDesc->plannedstmt->nParamExec > 0)
|
|
estate->es_param_exec_vals = (ParamExecData *)
|
|
palloc0(queryDesc->plannedstmt->nParamExec * sizeof(ParamExecData));
|
|
|
|
estate->es_sourceText = queryDesc->sourceText;
|
|
|
|
/*
|
|
* Fill in the query environment, if any, from queryDesc.
|
|
*/
|
|
estate->es_queryEnv = queryDesc->queryEnv;
|
|
|
|
/*
|
|
* If non-read-only query, set the command ID to mark output tuples with
|
|
*/
|
|
switch (queryDesc->operation)
|
|
{
|
|
case CMD_SELECT:
|
|
|
|
/*
|
|
* SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark
|
|
* tuples
|
|
*/
|
|
if (queryDesc->plannedstmt->rowMarks != NIL ||
|
|
queryDesc->plannedstmt->hasModifyingCTE)
|
|
estate->es_output_cid = GetCurrentCommandId(true);
|
|
|
|
/*
|
|
* A SELECT without modifying CTEs can't possibly queue triggers,
|
|
* so force skip-triggers mode. This is just a marginal efficiency
|
|
* hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't
|
|
* all that expensive, but we might as well do it.
|
|
*/
|
|
if (!queryDesc->plannedstmt->hasModifyingCTE)
|
|
eflags |= EXEC_FLAG_SKIP_TRIGGERS;
|
|
break;
|
|
|
|
case CMD_INSERT:
|
|
case CMD_DELETE:
|
|
case CMD_UPDATE:
|
|
estate->es_output_cid = GetCurrentCommandId(true);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized operation code: %d",
|
|
(int) queryDesc->operation);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy other important information into the EState
|
|
*/
|
|
estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot);
|
|
estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot);
|
|
estate->es_top_eflags = eflags;
|
|
estate->es_instrument = queryDesc->instrument_options;
|
|
|
|
/*
|
|
* Initialize the plan state tree
|
|
*/
|
|
InitPlan(queryDesc, eflags);
|
|
|
|
/*
|
|
* Set up an AFTER-trigger statement context, unless told not to, or
|
|
* unless it's EXPLAIN-only mode (when ExecutorFinish won't be called).
|
|
*/
|
|
if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY)))
|
|
AfterTriggerBeginQuery();
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRun
|
|
*
|
|
* This is the main routine of the executor module. It accepts
|
|
* the query descriptor from the traffic cop and executes the
|
|
* query plan.
|
|
*
|
|
* ExecutorStart must have been called already.
|
|
*
|
|
* If direction is NoMovementScanDirection then nothing is done
|
|
* except to start up/shut down the destination. Otherwise,
|
|
* we retrieve up to 'count' tuples in the specified direction.
|
|
*
|
|
* Note: count = 0 is interpreted as no portal limit, i.e., run to
|
|
* completion. Also note that the count limit is only applied to
|
|
* retrieved tuples, not for instance to those inserted/updated/deleted
|
|
* by a ModifyTable plan node.
|
|
*
|
|
* There is no return value, but output tuples (if any) are sent to
|
|
* the destination receiver specified in the QueryDesc; and the number
|
|
* of tuples processed at the top level can be found in
|
|
* estate->es_processed.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorRun is called. Such a plugin would
|
|
* normally call standard_ExecutorRun().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorRun(QueryDesc *queryDesc,
|
|
ScanDirection direction, uint64 count,
|
|
bool execute_once)
|
|
{
|
|
if (ExecutorRun_hook)
|
|
(*ExecutorRun_hook) (queryDesc, direction, count, execute_once);
|
|
else
|
|
standard_ExecutorRun(queryDesc, direction, count, execute_once);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorRun(QueryDesc *queryDesc,
|
|
ScanDirection direction, uint64 count, bool execute_once)
|
|
{
|
|
EState *estate;
|
|
CmdType operation;
|
|
DestReceiver *dest;
|
|
bool sendTuples;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Allow instrumentation of Executor overall runtime */
|
|
if (queryDesc->totaltime)
|
|
InstrStartNode(queryDesc->totaltime);
|
|
|
|
/*
|
|
* extract information from the query descriptor and the query feature.
|
|
*/
|
|
operation = queryDesc->operation;
|
|
dest = queryDesc->dest;
|
|
|
|
/*
|
|
* startup tuple receiver, if we will be emitting tuples
|
|
*/
|
|
estate->es_processed = 0;
|
|
estate->es_lastoid = InvalidOid;
|
|
|
|
sendTuples = (operation == CMD_SELECT ||
|
|
queryDesc->plannedstmt->hasReturning);
|
|
|
|
if (sendTuples)
|
|
(*dest->rStartup) (dest, operation, queryDesc->tupDesc);
|
|
|
|
/*
|
|
* run plan
|
|
*/
|
|
if (!ScanDirectionIsNoMovement(direction))
|
|
{
|
|
if (execute_once && queryDesc->already_executed)
|
|
elog(ERROR, "can't re-execute query flagged for single execution");
|
|
queryDesc->already_executed = true;
|
|
|
|
ExecutePlan(estate,
|
|
queryDesc->planstate,
|
|
queryDesc->plannedstmt->parallelModeNeeded,
|
|
operation,
|
|
sendTuples,
|
|
count,
|
|
direction,
|
|
dest,
|
|
execute_once);
|
|
}
|
|
|
|
/*
|
|
* shutdown tuple receiver, if we started it
|
|
*/
|
|
if (sendTuples)
|
|
(*dest->rShutdown) (dest);
|
|
|
|
if (queryDesc->totaltime)
|
|
InstrStopNode(queryDesc->totaltime, estate->es_processed);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorFinish
|
|
*
|
|
* This routine must be called after the last ExecutorRun call.
|
|
* It performs cleanup such as firing AFTER triggers. It is
|
|
* separate from ExecutorEnd because EXPLAIN ANALYZE needs to
|
|
* include these actions in the total runtime.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorFinish is called. Such a plugin would
|
|
* normally call standard_ExecutorFinish().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorFinish(QueryDesc *queryDesc)
|
|
{
|
|
if (ExecutorFinish_hook)
|
|
(*ExecutorFinish_hook) (queryDesc);
|
|
else
|
|
standard_ExecutorFinish(queryDesc);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorFinish(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/* This should be run once and only once per Executor instance */
|
|
Assert(!estate->es_finished);
|
|
|
|
/* Switch into per-query memory context */
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Allow instrumentation of Executor overall runtime */
|
|
if (queryDesc->totaltime)
|
|
InstrStartNode(queryDesc->totaltime);
|
|
|
|
/* Run ModifyTable nodes to completion */
|
|
ExecPostprocessPlan(estate);
|
|
|
|
/* Execute queued AFTER triggers, unless told not to */
|
|
if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS))
|
|
AfterTriggerEndQuery(estate);
|
|
|
|
if (queryDesc->totaltime)
|
|
InstrStopNode(queryDesc->totaltime, 0);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
estate->es_finished = true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorEnd
|
|
*
|
|
* This routine must be called at the end of execution of any
|
|
* query plan
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorEnd is called. Such a plugin would
|
|
* normally call standard_ExecutorEnd().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
if (ExecutorEnd_hook)
|
|
(*ExecutorEnd_hook) (queryDesc);
|
|
else
|
|
standard_ExecutorEnd(queryDesc);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/*
|
|
* Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This
|
|
* Assert is needed because ExecutorFinish is new as of 9.1, and callers
|
|
* might forget to call it.
|
|
*/
|
|
Assert(estate->es_finished ||
|
|
(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/*
|
|
* Switch into per-query memory context to run ExecEndPlan
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
ExecEndPlan(queryDesc->planstate, estate);
|
|
|
|
/* do away with our snapshots */
|
|
UnregisterSnapshot(estate->es_snapshot);
|
|
UnregisterSnapshot(estate->es_crosscheck_snapshot);
|
|
|
|
/*
|
|
* Must switch out of context before destroying it
|
|
*/
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* Release EState and per-query memory context. This should release
|
|
* everything the executor has allocated.
|
|
*/
|
|
FreeExecutorState(estate);
|
|
|
|
/* Reset queryDesc fields that no longer point to anything */
|
|
queryDesc->tupDesc = NULL;
|
|
queryDesc->estate = NULL;
|
|
queryDesc->planstate = NULL;
|
|
queryDesc->totaltime = NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRewind
|
|
*
|
|
* This routine may be called on an open queryDesc to rewind it
|
|
* to the start.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorRewind(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/* It's probably not sensible to rescan updating queries */
|
|
Assert(queryDesc->operation == CMD_SELECT);
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* rescan plan
|
|
*/
|
|
ExecReScan(queryDesc->planstate);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecCheckRTPerms
|
|
* Check access permissions for all relations listed in a range table.
|
|
*
|
|
* Returns true if permissions are adequate. Otherwise, throws an appropriate
|
|
* error if ereport_on_violation is true, or simply returns false otherwise.
|
|
*
|
|
* Note that this does NOT address row level security policies (aka: RLS). If
|
|
* rows will be returned to the user as a result of this permission check
|
|
* passing, then RLS also needs to be consulted (and check_enable_rls()).
|
|
*
|
|
* See rewrite/rowsecurity.c.
|
|
*/
|
|
bool
|
|
ExecCheckRTPerms(List *rangeTable, bool ereport_on_violation)
|
|
{
|
|
ListCell *l;
|
|
bool result = true;
|
|
|
|
foreach(l, rangeTable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
|
|
|
|
result = ExecCheckRTEPerms(rte);
|
|
if (!result)
|
|
{
|
|
Assert(rte->rtekind == RTE_RELATION);
|
|
if (ereport_on_violation)
|
|
aclcheck_error(ACLCHECK_NO_PRIV, ACL_KIND_CLASS,
|
|
get_rel_name(rte->relid));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ExecutorCheckPerms_hook)
|
|
result = (*ExecutorCheckPerms_hook) (rangeTable,
|
|
ereport_on_violation);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* ExecCheckRTEPerms
|
|
* Check access permissions for a single RTE.
|
|
*/
|
|
static bool
|
|
ExecCheckRTEPerms(RangeTblEntry *rte)
|
|
{
|
|
AclMode requiredPerms;
|
|
AclMode relPerms;
|
|
AclMode remainingPerms;
|
|
Oid relOid;
|
|
Oid userid;
|
|
|
|
/*
|
|
* Only plain-relation RTEs need to be checked here. Function RTEs are
|
|
* checked when the function is prepared for execution. Join, subquery,
|
|
* and special RTEs need no checks.
|
|
*/
|
|
if (rte->rtekind != RTE_RELATION)
|
|
return true;
|
|
|
|
/*
|
|
* No work if requiredPerms is empty.
|
|
*/
|
|
requiredPerms = rte->requiredPerms;
|
|
if (requiredPerms == 0)
|
|
return true;
|
|
|
|
relOid = rte->relid;
|
|
|
|
/*
|
|
* userid to check as: current user unless we have a setuid indication.
|
|
*
|
|
* Note: GetUserId() is presently fast enough that there's no harm in
|
|
* calling it separately for each RTE. If that stops being true, we could
|
|
* call it once in ExecCheckRTPerms and pass the userid down from there.
|
|
* But for now, no need for the extra clutter.
|
|
*/
|
|
userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
|
|
|
|
/*
|
|
* We must have *all* the requiredPerms bits, but some of the bits can be
|
|
* satisfied from column-level rather than relation-level permissions.
|
|
* First, remove any bits that are satisfied by relation permissions.
|
|
*/
|
|
relPerms = pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL);
|
|
remainingPerms = requiredPerms & ~relPerms;
|
|
if (remainingPerms != 0)
|
|
{
|
|
int col = -1;
|
|
|
|
/*
|
|
* If we lack any permissions that exist only as relation permissions,
|
|
* we can fail straight away.
|
|
*/
|
|
if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE))
|
|
return false;
|
|
|
|
/*
|
|
* Check to see if we have the needed privileges at column level.
|
|
*
|
|
* Note: failures just report a table-level error; it would be nicer
|
|
* to report a column-level error if we have some but not all of the
|
|
* column privileges.
|
|
*/
|
|
if (remainingPerms & ACL_SELECT)
|
|
{
|
|
/*
|
|
* When the query doesn't explicitly reference any columns (for
|
|
* example, SELECT COUNT(*) FROM table), allow the query if we
|
|
* have SELECT on any column of the rel, as per SQL spec.
|
|
*/
|
|
if (bms_is_empty(rte->selectedCols))
|
|
{
|
|
if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
|
|
ACLMASK_ANY) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
|
|
while ((col = bms_next_member(rte->selectedCols, col)) >= 0)
|
|
{
|
|
/* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
|
|
AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
|
|
|
|
if (attno == InvalidAttrNumber)
|
|
{
|
|
/* Whole-row reference, must have priv on all cols */
|
|
if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
|
|
ACLMASK_ALL) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (pg_attribute_aclcheck(relOid, attno, userid,
|
|
ACL_SELECT) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Basically the same for the mod columns, for both INSERT and UPDATE
|
|
* privilege as specified by remainingPerms.
|
|
*/
|
|
if (remainingPerms & ACL_INSERT && !ExecCheckRTEPermsModified(relOid,
|
|
userid,
|
|
rte->insertedCols,
|
|
ACL_INSERT))
|
|
return false;
|
|
|
|
if (remainingPerms & ACL_UPDATE && !ExecCheckRTEPermsModified(relOid,
|
|
userid,
|
|
rte->updatedCols,
|
|
ACL_UPDATE))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ExecCheckRTEPermsModified
|
|
* Check INSERT or UPDATE access permissions for a single RTE (these
|
|
* are processed uniformly).
|
|
*/
|
|
static bool
|
|
ExecCheckRTEPermsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols,
|
|
AclMode requiredPerms)
|
|
{
|
|
int col = -1;
|
|
|
|
/*
|
|
* When the query doesn't explicitly update any columns, allow the query
|
|
* if we have permission on any column of the rel. This is to handle
|
|
* SELECT FOR UPDATE as well as possible corner cases in UPDATE.
|
|
*/
|
|
if (bms_is_empty(modifiedCols))
|
|
{
|
|
if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms,
|
|
ACLMASK_ANY) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
|
|
while ((col = bms_next_member(modifiedCols, col)) >= 0)
|
|
{
|
|
/* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
|
|
AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
|
|
|
|
if (attno == InvalidAttrNumber)
|
|
{
|
|
/* whole-row reference can't happen here */
|
|
elog(ERROR, "whole-row update is not implemented");
|
|
}
|
|
else
|
|
{
|
|
if (pg_attribute_aclcheck(relOid, attno, userid,
|
|
requiredPerms) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check that the query does not imply any writes to non-temp tables;
|
|
* unless we're in parallel mode, in which case don't even allow writes
|
|
* to temp tables.
|
|
*
|
|
* Note: in a Hot Standby slave this would need to reject writes to temp
|
|
* tables just as we do in parallel mode; but an HS slave can't have created
|
|
* any temp tables in the first place, so no need to check that.
|
|
*/
|
|
static void
|
|
ExecCheckXactReadOnly(PlannedStmt *plannedstmt)
|
|
{
|
|
ListCell *l;
|
|
|
|
/*
|
|
* Fail if write permissions are requested in parallel mode for table
|
|
* (temp or non-temp), otherwise fail for any non-temp table.
|
|
*/
|
|
foreach(l, plannedstmt->rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
|
|
|
|
if (rte->rtekind != RTE_RELATION)
|
|
continue;
|
|
|
|
if ((rte->requiredPerms & (~ACL_SELECT)) == 0)
|
|
continue;
|
|
|
|
if (isTempNamespace(get_rel_namespace(rte->relid)))
|
|
continue;
|
|
|
|
PreventCommandIfReadOnly(CreateCommandTag((Node *) plannedstmt));
|
|
}
|
|
|
|
if (plannedstmt->commandType != CMD_SELECT || plannedstmt->hasModifyingCTE)
|
|
PreventCommandIfParallelMode(CreateCommandTag((Node *) plannedstmt));
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* InitPlan
|
|
*
|
|
* Initializes the query plan: open files, allocate storage
|
|
* and start up the rule manager
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
InitPlan(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
CmdType operation = queryDesc->operation;
|
|
PlannedStmt *plannedstmt = queryDesc->plannedstmt;
|
|
Plan *plan = plannedstmt->planTree;
|
|
List *rangeTable = plannedstmt->rtable;
|
|
EState *estate = queryDesc->estate;
|
|
PlanState *planstate;
|
|
TupleDesc tupType;
|
|
ListCell *l;
|
|
int i;
|
|
|
|
/*
|
|
* Do permissions checks
|
|
*/
|
|
ExecCheckRTPerms(rangeTable, true);
|
|
|
|
/*
|
|
* initialize the node's execution state
|
|
*/
|
|
estate->es_range_table = rangeTable;
|
|
estate->es_plannedstmt = plannedstmt;
|
|
|
|
/*
|
|
* initialize result relation stuff, and open/lock the result rels.
|
|
*
|
|
* We must do this before initializing the plan tree, else we might try to
|
|
* do a lock upgrade if a result rel is also a source rel.
|
|
*/
|
|
if (plannedstmt->resultRelations)
|
|
{
|
|
List *resultRelations = plannedstmt->resultRelations;
|
|
int numResultRelations = list_length(resultRelations);
|
|
ResultRelInfo *resultRelInfos;
|
|
ResultRelInfo *resultRelInfo;
|
|
|
|
resultRelInfos = (ResultRelInfo *)
|
|
palloc(numResultRelations * sizeof(ResultRelInfo));
|
|
resultRelInfo = resultRelInfos;
|
|
foreach(l, resultRelations)
|
|
{
|
|
Index resultRelationIndex = lfirst_int(l);
|
|
Oid resultRelationOid;
|
|
Relation resultRelation;
|
|
|
|
resultRelationOid = getrelid(resultRelationIndex, rangeTable);
|
|
resultRelation = heap_open(resultRelationOid, RowExclusiveLock);
|
|
|
|
InitResultRelInfo(resultRelInfo,
|
|
resultRelation,
|
|
resultRelationIndex,
|
|
NULL,
|
|
estate->es_instrument);
|
|
resultRelInfo++;
|
|
}
|
|
estate->es_result_relations = resultRelInfos;
|
|
estate->es_num_result_relations = numResultRelations;
|
|
/* es_result_relation_info is NULL except when within ModifyTable */
|
|
estate->es_result_relation_info = NULL;
|
|
|
|
/*
|
|
* In the partitioned result relation case, lock the non-leaf result
|
|
* relations too. A subset of these are the roots of respective
|
|
* partitioned tables, for which we also allocate ResulRelInfos.
|
|
*/
|
|
estate->es_root_result_relations = NULL;
|
|
estate->es_num_root_result_relations = 0;
|
|
if (plannedstmt->nonleafResultRelations)
|
|
{
|
|
int num_roots = list_length(plannedstmt->rootResultRelations);
|
|
|
|
/*
|
|
* Firstly, build ResultRelInfos for all the partitioned table
|
|
* roots, because we will need them to fire the statement-level
|
|
* triggers, if any.
|
|
*/
|
|
resultRelInfos = (ResultRelInfo *)
|
|
palloc(num_roots * sizeof(ResultRelInfo));
|
|
resultRelInfo = resultRelInfos;
|
|
foreach(l, plannedstmt->rootResultRelations)
|
|
{
|
|
Index resultRelIndex = lfirst_int(l);
|
|
Oid resultRelOid;
|
|
Relation resultRelDesc;
|
|
|
|
resultRelOid = getrelid(resultRelIndex, rangeTable);
|
|
resultRelDesc = heap_open(resultRelOid, RowExclusiveLock);
|
|
InitResultRelInfo(resultRelInfo,
|
|
resultRelDesc,
|
|
lfirst_int(l),
|
|
NULL,
|
|
estate->es_instrument);
|
|
resultRelInfo++;
|
|
}
|
|
|
|
estate->es_root_result_relations = resultRelInfos;
|
|
estate->es_num_root_result_relations = num_roots;
|
|
|
|
/* Simply lock the rest of them. */
|
|
foreach(l, plannedstmt->nonleafResultRelations)
|
|
{
|
|
Index resultRelIndex = lfirst_int(l);
|
|
|
|
/* We locked the roots above. */
|
|
if (!list_member_int(plannedstmt->rootResultRelations,
|
|
resultRelIndex))
|
|
LockRelationOid(getrelid(resultRelIndex, rangeTable),
|
|
RowExclusiveLock);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* if no result relation, then set state appropriately
|
|
*/
|
|
estate->es_result_relations = NULL;
|
|
estate->es_num_result_relations = 0;
|
|
estate->es_result_relation_info = NULL;
|
|
estate->es_root_result_relations = NULL;
|
|
estate->es_num_root_result_relations = 0;
|
|
}
|
|
|
|
/*
|
|
* Similarly, we have to lock relations selected FOR [KEY] UPDATE/SHARE
|
|
* before we initialize the plan tree, else we'd be risking lock upgrades.
|
|
* While we are at it, build the ExecRowMark list. Any partitioned child
|
|
* tables are ignored here (because isParent=true) and will be locked by
|
|
* the first Append or MergeAppend node that references them. (Note that
|
|
* the RowMarks corresponding to partitioned child tables are present in
|
|
* the same list as the rest, i.e., plannedstmt->rowMarks.)
|
|
*/
|
|
estate->es_rowMarks = NIL;
|
|
foreach(l, plannedstmt->rowMarks)
|
|
{
|
|
PlanRowMark *rc = (PlanRowMark *) lfirst(l);
|
|
Oid relid;
|
|
Relation relation;
|
|
ExecRowMark *erm;
|
|
|
|
/* ignore "parent" rowmarks; they are irrelevant at runtime */
|
|
if (rc->isParent)
|
|
continue;
|
|
|
|
/* get relation's OID (will produce InvalidOid if subquery) */
|
|
relid = getrelid(rc->rti, rangeTable);
|
|
|
|
/*
|
|
* If you change the conditions under which rel locks are acquired
|
|
* here, be sure to adjust ExecOpenScanRelation to match.
|
|
*/
|
|
switch (rc->markType)
|
|
{
|
|
case ROW_MARK_EXCLUSIVE:
|
|
case ROW_MARK_NOKEYEXCLUSIVE:
|
|
case ROW_MARK_SHARE:
|
|
case ROW_MARK_KEYSHARE:
|
|
relation = heap_open(relid, RowShareLock);
|
|
break;
|
|
case ROW_MARK_REFERENCE:
|
|
relation = heap_open(relid, AccessShareLock);
|
|
break;
|
|
case ROW_MARK_COPY:
|
|
/* no physical table access is required */
|
|
relation = NULL;
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized markType: %d", rc->markType);
|
|
relation = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
/* Check that relation is a legal target for marking */
|
|
if (relation)
|
|
CheckValidRowMarkRel(relation, rc->markType);
|
|
|
|
erm = (ExecRowMark *) palloc(sizeof(ExecRowMark));
|
|
erm->relation = relation;
|
|
erm->relid = relid;
|
|
erm->rti = rc->rti;
|
|
erm->prti = rc->prti;
|
|
erm->rowmarkId = rc->rowmarkId;
|
|
erm->markType = rc->markType;
|
|
erm->strength = rc->strength;
|
|
erm->waitPolicy = rc->waitPolicy;
|
|
erm->ermActive = false;
|
|
ItemPointerSetInvalid(&(erm->curCtid));
|
|
erm->ermExtra = NULL;
|
|
estate->es_rowMarks = lappend(estate->es_rowMarks, erm);
|
|
}
|
|
|
|
/*
|
|
* Initialize the executor's tuple table to empty.
|
|
*/
|
|
estate->es_tupleTable = NIL;
|
|
estate->es_trig_tuple_slot = NULL;
|
|
estate->es_trig_oldtup_slot = NULL;
|
|
estate->es_trig_newtup_slot = NULL;
|
|
|
|
/* mark EvalPlanQual not active */
|
|
estate->es_epqTuple = NULL;
|
|
estate->es_epqTupleSet = NULL;
|
|
estate->es_epqScanDone = NULL;
|
|
|
|
/*
|
|
* Initialize private state information for each SubPlan. We must do this
|
|
* before running ExecInitNode on the main query tree, since
|
|
* ExecInitSubPlan expects to be able to find these entries.
|
|
*/
|
|
Assert(estate->es_subplanstates == NIL);
|
|
i = 1; /* subplan indices count from 1 */
|
|
foreach(l, plannedstmt->subplans)
|
|
{
|
|
Plan *subplan = (Plan *) lfirst(l);
|
|
PlanState *subplanstate;
|
|
int sp_eflags;
|
|
|
|
/*
|
|
* A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If
|
|
* it is a parameterless subplan (not initplan), we suggest that it be
|
|
* prepared to handle REWIND efficiently; otherwise there is no need.
|
|
*/
|
|
sp_eflags = eflags
|
|
& (EXEC_FLAG_EXPLAIN_ONLY | EXEC_FLAG_WITH_NO_DATA);
|
|
if (bms_is_member(i, plannedstmt->rewindPlanIDs))
|
|
sp_eflags |= EXEC_FLAG_REWIND;
|
|
|
|
subplanstate = ExecInitNode(subplan, estate, sp_eflags);
|
|
|
|
estate->es_subplanstates = lappend(estate->es_subplanstates,
|
|
subplanstate);
|
|
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Initialize the private state information for all the nodes in the query
|
|
* tree. This opens files, allocates storage and leaves us ready to start
|
|
* processing tuples.
|
|
*/
|
|
planstate = ExecInitNode(plan, estate, eflags);
|
|
|
|
/*
|
|
* Get the tuple descriptor describing the type of tuples to return.
|
|
*/
|
|
tupType = ExecGetResultType(planstate);
|
|
|
|
/*
|
|
* Initialize the junk filter if needed. SELECT queries need a filter if
|
|
* there are any junk attrs in the top-level tlist.
|
|
*/
|
|
if (operation == CMD_SELECT)
|
|
{
|
|
bool junk_filter_needed = false;
|
|
ListCell *tlist;
|
|
|
|
foreach(tlist, plan->targetlist)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tlist);
|
|
|
|
if (tle->resjunk)
|
|
{
|
|
junk_filter_needed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (junk_filter_needed)
|
|
{
|
|
JunkFilter *j;
|
|
|
|
j = ExecInitJunkFilter(planstate->plan->targetlist,
|
|
tupType->tdhasoid,
|
|
ExecInitExtraTupleSlot(estate));
|
|
estate->es_junkFilter = j;
|
|
|
|
/* Want to return the cleaned tuple type */
|
|
tupType = j->jf_cleanTupType;
|
|
}
|
|
}
|
|
|
|
queryDesc->tupDesc = tupType;
|
|
queryDesc->planstate = planstate;
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed result relation is a legal target for the operation
|
|
*
|
|
* Generally the parser and/or planner should have noticed any such mistake
|
|
* already, but let's make sure.
|
|
*
|
|
* Note: when changing this function, you probably also need to look at
|
|
* CheckValidRowMarkRel.
|
|
*/
|
|
void
|
|
CheckValidResultRel(Relation resultRel, CmdType operation)
|
|
{
|
|
TriggerDesc *trigDesc = resultRel->trigdesc;
|
|
FdwRoutine *fdwroutine;
|
|
|
|
switch (resultRel->rd_rel->relkind)
|
|
{
|
|
case RELKIND_RELATION:
|
|
case RELKIND_PARTITIONED_TABLE:
|
|
CheckCmdReplicaIdentity(resultRel, operation);
|
|
break;
|
|
case RELKIND_SEQUENCE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change sequence \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change TOAST relation \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
|
|
/*
|
|
* Okay only if there's a suitable INSTEAD OF trigger. Messages
|
|
* here should match rewriteHandler.c's rewriteTargetView, except
|
|
* that we omit errdetail because we haven't got the information
|
|
* handy (and given that we really shouldn't get here anyway, it's
|
|
* not worth great exertion to get).
|
|
*/
|
|
switch (operation)
|
|
{
|
|
case CMD_INSERT:
|
|
if (!trigDesc || !trigDesc->trig_insert_instead_row)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot insert into view \"%s\"",
|
|
RelationGetRelationName(resultRel)),
|
|
errhint("To enable inserting into the view, provide an INSTEAD OF INSERT trigger or an unconditional ON INSERT DO INSTEAD rule.")));
|
|
break;
|
|
case CMD_UPDATE:
|
|
if (!trigDesc || !trigDesc->trig_update_instead_row)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot update view \"%s\"",
|
|
RelationGetRelationName(resultRel)),
|
|
errhint("To enable updating the view, provide an INSTEAD OF UPDATE trigger or an unconditional ON UPDATE DO INSTEAD rule.")));
|
|
break;
|
|
case CMD_DELETE:
|
|
if (!trigDesc || !trigDesc->trig_delete_instead_row)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot delete from view \"%s\"",
|
|
RelationGetRelationName(resultRel)),
|
|
errhint("To enable deleting from the view, provide an INSTEAD OF DELETE trigger or an unconditional ON DELETE DO INSTEAD rule.")));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized CmdType: %d", (int) operation);
|
|
break;
|
|
}
|
|
break;
|
|
case RELKIND_MATVIEW:
|
|
if (!MatViewIncrementalMaintenanceIsEnabled())
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change materialized view \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_FOREIGN_TABLE:
|
|
/* Okay only if the FDW supports it */
|
|
fdwroutine = GetFdwRoutineForRelation(resultRel, false);
|
|
switch (operation)
|
|
{
|
|
case CMD_INSERT:
|
|
if (fdwroutine->ExecForeignInsert == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot insert into foreign table \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow inserts",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case CMD_UPDATE:
|
|
if (fdwroutine->ExecForeignUpdate == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot update foreign table \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow updates",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case CMD_DELETE:
|
|
if (fdwroutine->ExecForeignDelete == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot delete from foreign table \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow deletes",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized CmdType: %d", (int) operation);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change relation \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed rowmark target relation is a legal target
|
|
*
|
|
* In most cases parser and/or planner should have noticed this already, but
|
|
* they don't cover all cases.
|
|
*/
|
|
static void
|
|
CheckValidRowMarkRel(Relation rel, RowMarkType markType)
|
|
{
|
|
FdwRoutine *fdwroutine;
|
|
|
|
switch (rel->rd_rel->relkind)
|
|
{
|
|
case RELKIND_RELATION:
|
|
case RELKIND_PARTITIONED_TABLE:
|
|
/* OK */
|
|
break;
|
|
case RELKIND_SEQUENCE:
|
|
/* Must disallow this because we don't vacuum sequences */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in sequence \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
/* We could allow this, but there seems no good reason to */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in TOAST relation \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
/* Should not get here; planner should have expanded the view */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in view \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_MATVIEW:
|
|
/* Allow referencing a matview, but not actual locking clauses */
|
|
if (markType != ROW_MARK_REFERENCE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in materialized view \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_FOREIGN_TABLE:
|
|
/* Okay only if the FDW supports it */
|
|
fdwroutine = GetFdwRoutineForRelation(rel, false);
|
|
if (fdwroutine->RefetchForeignRow == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot lock rows in foreign table \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
default:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in relation \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize ResultRelInfo data for one result relation
|
|
*
|
|
* Caution: before Postgres 9.1, this function included the relkind checking
|
|
* that's now in CheckValidResultRel, and it also did ExecOpenIndices if
|
|
* appropriate. Be sure callers cover those needs.
|
|
*/
|
|
void
|
|
InitResultRelInfo(ResultRelInfo *resultRelInfo,
|
|
Relation resultRelationDesc,
|
|
Index resultRelationIndex,
|
|
Relation partition_root,
|
|
int instrument_options)
|
|
{
|
|
List *partition_check = NIL;
|
|
|
|
MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
|
|
resultRelInfo->type = T_ResultRelInfo;
|
|
resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
|
|
resultRelInfo->ri_RelationDesc = resultRelationDesc;
|
|
resultRelInfo->ri_NumIndices = 0;
|
|
resultRelInfo->ri_IndexRelationDescs = NULL;
|
|
resultRelInfo->ri_IndexRelationInfo = NULL;
|
|
/* make a copy so as not to depend on relcache info not changing... */
|
|
resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
|
|
if (resultRelInfo->ri_TrigDesc)
|
|
{
|
|
int n = resultRelInfo->ri_TrigDesc->numtriggers;
|
|
|
|
resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
|
|
palloc0(n * sizeof(FmgrInfo));
|
|
resultRelInfo->ri_TrigWhenExprs = (ExprState **)
|
|
palloc0(n * sizeof(ExprState *));
|
|
if (instrument_options)
|
|
resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options);
|
|
}
|
|
else
|
|
{
|
|
resultRelInfo->ri_TrigFunctions = NULL;
|
|
resultRelInfo->ri_TrigWhenExprs = NULL;
|
|
resultRelInfo->ri_TrigInstrument = NULL;
|
|
}
|
|
if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
|
|
resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true);
|
|
else
|
|
resultRelInfo->ri_FdwRoutine = NULL;
|
|
resultRelInfo->ri_FdwState = NULL;
|
|
resultRelInfo->ri_usesFdwDirectModify = false;
|
|
resultRelInfo->ri_ConstraintExprs = NULL;
|
|
resultRelInfo->ri_junkFilter = NULL;
|
|
resultRelInfo->ri_projectReturning = NULL;
|
|
|
|
/*
|
|
* Partition constraint, which also includes the partition constraint of
|
|
* all the ancestors that are partitions. Note that it will be checked
|
|
* even in the case of tuple-routing where this table is the target leaf
|
|
* partition, if there any BR triggers defined on the table. Although
|
|
* tuple-routing implicitly preserves the partition constraint of the
|
|
* target partition for a given row, the BR triggers may change the row
|
|
* such that the constraint is no longer satisfied, which we must fail for
|
|
* by checking it explicitly.
|
|
*
|
|
* If this is a partitioned table, the partition constraint (if any) of a
|
|
* given row will be checked just before performing tuple-routing.
|
|
*/
|
|
partition_check = RelationGetPartitionQual(resultRelationDesc);
|
|
|
|
resultRelInfo->ri_PartitionCheck = partition_check;
|
|
resultRelInfo->ri_PartitionRoot = partition_root;
|
|
}
|
|
|
|
/*
|
|
* ExecGetTriggerResultRel
|
|
*
|
|
* Get a ResultRelInfo for a trigger target relation. Most of the time,
|
|
* triggers are fired on one of the result relations of the query, and so
|
|
* we can just return a member of the es_result_relations array. (Note: in
|
|
* self-join situations there might be multiple members with the same OID;
|
|
* if so it doesn't matter which one we pick.) However, it is sometimes
|
|
* necessary to fire triggers on other relations; this happens mainly when an
|
|
* RI update trigger queues additional triggers on other relations, which will
|
|
* be processed in the context of the outer query. For efficiency's sake,
|
|
* we want to have a ResultRelInfo for those triggers too; that can avoid
|
|
* repeated re-opening of the relation. (It also provides a way for EXPLAIN
|
|
* ANALYZE to report the runtimes of such triggers.) So we make additional
|
|
* ResultRelInfo's as needed, and save them in es_trig_target_relations.
|
|
*/
|
|
ResultRelInfo *
|
|
ExecGetTriggerResultRel(EState *estate, Oid relid)
|
|
{
|
|
ResultRelInfo *rInfo;
|
|
int nr;
|
|
ListCell *l;
|
|
Relation rel;
|
|
MemoryContext oldcontext;
|
|
|
|
/* First, search through the query result relations */
|
|
rInfo = estate->es_result_relations;
|
|
nr = estate->es_num_result_relations;
|
|
while (nr > 0)
|
|
{
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
|
|
return rInfo;
|
|
rInfo++;
|
|
nr--;
|
|
}
|
|
/* Nope, but maybe we already made an extra ResultRelInfo for it */
|
|
foreach(l, estate->es_trig_target_relations)
|
|
{
|
|
rInfo = (ResultRelInfo *) lfirst(l);
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
|
|
return rInfo;
|
|
}
|
|
/* Nope, so we need a new one */
|
|
|
|
/*
|
|
* Open the target relation's relcache entry. We assume that an
|
|
* appropriate lock is still held by the backend from whenever the trigger
|
|
* event got queued, so we need take no new lock here. Also, we need not
|
|
* recheck the relkind, so no need for CheckValidResultRel.
|
|
*/
|
|
rel = heap_open(relid, NoLock);
|
|
|
|
/*
|
|
* Make the new entry in the right context.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
rInfo = makeNode(ResultRelInfo);
|
|
InitResultRelInfo(rInfo,
|
|
rel,
|
|
0, /* dummy rangetable index */
|
|
NULL,
|
|
estate->es_instrument);
|
|
estate->es_trig_target_relations =
|
|
lappend(estate->es_trig_target_relations, rInfo);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* Currently, we don't need any index information in ResultRelInfos used
|
|
* only for triggers, so no need to call ExecOpenIndices.
|
|
*/
|
|
|
|
return rInfo;
|
|
}
|
|
|
|
/*
|
|
* Close any relations that have been opened by ExecGetTriggerResultRel().
|
|
*/
|
|
void
|
|
ExecCleanUpTriggerState(EState *estate)
|
|
{
|
|
ListCell *l;
|
|
|
|
foreach(l, estate->es_trig_target_relations)
|
|
{
|
|
ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l);
|
|
|
|
/* Close indices and then the relation itself */
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecContextForcesOids
|
|
*
|
|
* This is pretty grotty: when doing INSERT, UPDATE, or CREATE TABLE AS,
|
|
* we need to ensure that result tuples have space for an OID iff they are
|
|
* going to be stored into a relation that has OIDs. In other contexts
|
|
* we are free to choose whether to leave space for OIDs in result tuples
|
|
* (we generally don't want to, but we do if a physical-tlist optimization
|
|
* is possible). This routine checks the plan context and returns TRUE if the
|
|
* choice is forced, FALSE if the choice is not forced. In the TRUE case,
|
|
* *hasoids is set to the required value.
|
|
*
|
|
* One reason this is ugly is that all plan nodes in the plan tree will emit
|
|
* tuples with space for an OID, though we really only need the topmost node
|
|
* to do so. However, node types like Sort don't project new tuples but just
|
|
* return their inputs, and in those cases the requirement propagates down
|
|
* to the input node. Eventually we might make this code smart enough to
|
|
* recognize how far down the requirement really goes, but for now we just
|
|
* make all plan nodes do the same thing if the top level forces the choice.
|
|
*
|
|
* We assume that if we are generating tuples for INSERT or UPDATE,
|
|
* estate->es_result_relation_info is already set up to describe the target
|
|
* relation. Note that in an UPDATE that spans an inheritance tree, some of
|
|
* the target relations may have OIDs and some not. We have to make the
|
|
* decisions on a per-relation basis as we initialize each of the subplans of
|
|
* the ModifyTable node, so ModifyTable has to set es_result_relation_info
|
|
* while initializing each subplan.
|
|
*
|
|
* CREATE TABLE AS is even uglier, because we don't have the target relation's
|
|
* descriptor available when this code runs; we have to look aside at the
|
|
* flags passed to ExecutorStart().
|
|
*/
|
|
bool
|
|
ExecContextForcesOids(PlanState *planstate, bool *hasoids)
|
|
{
|
|
ResultRelInfo *ri = planstate->state->es_result_relation_info;
|
|
|
|
if (ri != NULL)
|
|
{
|
|
Relation rel = ri->ri_RelationDesc;
|
|
|
|
if (rel != NULL)
|
|
{
|
|
*hasoids = rel->rd_rel->relhasoids;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (planstate->state->es_top_eflags & EXEC_FLAG_WITH_OIDS)
|
|
{
|
|
*hasoids = true;
|
|
return true;
|
|
}
|
|
if (planstate->state->es_top_eflags & EXEC_FLAG_WITHOUT_OIDS)
|
|
{
|
|
*hasoids = false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecPostprocessPlan
|
|
*
|
|
* Give plan nodes a final chance to execute before shutdown
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecPostprocessPlan(EState *estate)
|
|
{
|
|
ListCell *lc;
|
|
|
|
/*
|
|
* Make sure nodes run forward.
|
|
*/
|
|
estate->es_direction = ForwardScanDirection;
|
|
|
|
/*
|
|
* Run any secondary ModifyTable nodes to completion, in case the main
|
|
* query did not fetch all rows from them. (We do this to ensure that
|
|
* such nodes have predictable results.)
|
|
*/
|
|
foreach(lc, estate->es_auxmodifytables)
|
|
{
|
|
PlanState *ps = (PlanState *) lfirst(lc);
|
|
|
|
for (;;)
|
|
{
|
|
TupleTableSlot *slot;
|
|
|
|
/* Reset the per-output-tuple exprcontext each time */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
slot = ExecProcNode(ps);
|
|
|
|
if (TupIsNull(slot))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndPlan
|
|
*
|
|
* Cleans up the query plan -- closes files and frees up storage
|
|
*
|
|
* NOTE: we are no longer very worried about freeing storage per se
|
|
* in this code; FreeExecutorState should be guaranteed to release all
|
|
* memory that needs to be released. What we are worried about doing
|
|
* is closing relations and dropping buffer pins. Thus, for example,
|
|
* tuple tables must be cleared or dropped to ensure pins are released.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecEndPlan(PlanState *planstate, EState *estate)
|
|
{
|
|
ResultRelInfo *resultRelInfo;
|
|
int i;
|
|
ListCell *l;
|
|
|
|
/*
|
|
* shut down the node-type-specific query processing
|
|
*/
|
|
ExecEndNode(planstate);
|
|
|
|
/*
|
|
* for subplans too
|
|
*/
|
|
foreach(l, estate->es_subplanstates)
|
|
{
|
|
PlanState *subplanstate = (PlanState *) lfirst(l);
|
|
|
|
ExecEndNode(subplanstate);
|
|
}
|
|
|
|
/*
|
|
* destroy the executor's tuple table. Actually we only care about
|
|
* releasing buffer pins and tupdesc refcounts; there's no need to pfree
|
|
* the TupleTableSlots, since the containing memory context is about to go
|
|
* away anyway.
|
|
*/
|
|
ExecResetTupleTable(estate->es_tupleTable, false);
|
|
|
|
/*
|
|
* close the result relation(s) if any, but hold locks until xact commit.
|
|
*/
|
|
resultRelInfo = estate->es_result_relations;
|
|
for (i = estate->es_num_result_relations; i > 0; i--)
|
|
{
|
|
/* Close indices and then the relation itself */
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
resultRelInfo++;
|
|
}
|
|
|
|
/* Close the root target relation(s). */
|
|
resultRelInfo = estate->es_root_result_relations;
|
|
for (i = estate->es_num_root_result_relations; i > 0; i--)
|
|
{
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
resultRelInfo++;
|
|
}
|
|
|
|
/* likewise close any trigger target relations */
|
|
ExecCleanUpTriggerState(estate);
|
|
|
|
/*
|
|
* close any relations selected FOR [KEY] UPDATE/SHARE, again keeping
|
|
* locks
|
|
*/
|
|
foreach(l, estate->es_rowMarks)
|
|
{
|
|
ExecRowMark *erm = (ExecRowMark *) lfirst(l);
|
|
|
|
if (erm->relation)
|
|
heap_close(erm->relation, NoLock);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutePlan
|
|
*
|
|
* Processes the query plan until we have retrieved 'numberTuples' tuples,
|
|
* moving in the specified direction.
|
|
*
|
|
* Runs to completion if numberTuples is 0
|
|
*
|
|
* Note: the ctid attribute is a 'junk' attribute that is removed before the
|
|
* user can see it
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecutePlan(EState *estate,
|
|
PlanState *planstate,
|
|
bool use_parallel_mode,
|
|
CmdType operation,
|
|
bool sendTuples,
|
|
uint64 numberTuples,
|
|
ScanDirection direction,
|
|
DestReceiver *dest,
|
|
bool execute_once)
|
|
{
|
|
TupleTableSlot *slot;
|
|
uint64 current_tuple_count;
|
|
|
|
/*
|
|
* initialize local variables
|
|
*/
|
|
current_tuple_count = 0;
|
|
|
|
/*
|
|
* Set the direction.
|
|
*/
|
|
estate->es_direction = direction;
|
|
|
|
/*
|
|
* If the plan might potentially be executed multiple times, we must force
|
|
* it to run without parallelism, because we might exit early. Also
|
|
* disable parallelism when writing into a relation, because no database
|
|
* changes are allowed in parallel mode.
|
|
*/
|
|
if (!execute_once || dest->mydest == DestIntoRel)
|
|
use_parallel_mode = false;
|
|
|
|
if (use_parallel_mode)
|
|
EnterParallelMode();
|
|
|
|
/*
|
|
* Loop until we've processed the proper number of tuples from the plan.
|
|
*/
|
|
for (;;)
|
|
{
|
|
/* Reset the per-output-tuple exprcontext */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
/*
|
|
* Execute the plan and obtain a tuple
|
|
*/
|
|
slot = ExecProcNode(planstate);
|
|
|
|
/*
|
|
* if the tuple is null, then we assume there is nothing more to
|
|
* process so we just end the loop...
|
|
*/
|
|
if (TupIsNull(slot))
|
|
{
|
|
/* Allow nodes to release or shut down resources. */
|
|
(void) ExecShutdownNode(planstate);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we have a junk filter, then project a new tuple with the junk
|
|
* removed.
|
|
*
|
|
* Store this new "clean" tuple in the junkfilter's resultSlot.
|
|
* (Formerly, we stored it back over the "dirty" tuple, which is WRONG
|
|
* because that tuple slot has the wrong descriptor.)
|
|
*/
|
|
if (estate->es_junkFilter != NULL)
|
|
slot = ExecFilterJunk(estate->es_junkFilter, slot);
|
|
|
|
/*
|
|
* If we are supposed to send the tuple somewhere, do so. (In
|
|
* practice, this is probably always the case at this point.)
|
|
*/
|
|
if (sendTuples)
|
|
{
|
|
/*
|
|
* If we are not able to send the tuple, we assume the destination
|
|
* has closed and no more tuples can be sent. If that's the case,
|
|
* end the loop.
|
|
*/
|
|
if (!((*dest->receiveSlot) (slot, dest)))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Count tuples processed, if this is a SELECT. (For other operation
|
|
* types, the ModifyTable plan node must count the appropriate
|
|
* events.)
|
|
*/
|
|
if (operation == CMD_SELECT)
|
|
(estate->es_processed)++;
|
|
|
|
/*
|
|
* check our tuple count.. if we've processed the proper number then
|
|
* quit, else loop again and process more tuples. Zero numberTuples
|
|
* means no limit.
|
|
*/
|
|
current_tuple_count++;
|
|
if (numberTuples && numberTuples == current_tuple_count)
|
|
{
|
|
/* Allow nodes to release or shut down resources. */
|
|
(void) ExecShutdownNode(planstate);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (use_parallel_mode)
|
|
ExitParallelMode();
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecRelCheck --- check that tuple meets constraints for result relation
|
|
*
|
|
* Returns NULL if OK, else name of failed check constraint
|
|
*/
|
|
static const char *
|
|
ExecRelCheck(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
int ncheck = rel->rd_att->constr->num_check;
|
|
ConstrCheck *check = rel->rd_att->constr->check;
|
|
ExprContext *econtext;
|
|
MemoryContext oldContext;
|
|
int i;
|
|
|
|
/*
|
|
* If first time through for this result relation, build expression
|
|
* nodetrees for rel's constraint expressions. Keep them in the per-query
|
|
* memory context so they'll survive throughout the query.
|
|
*/
|
|
if (resultRelInfo->ri_ConstraintExprs == NULL)
|
|
{
|
|
oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
resultRelInfo->ri_ConstraintExprs =
|
|
(ExprState **) palloc(ncheck * sizeof(ExprState *));
|
|
for (i = 0; i < ncheck; i++)
|
|
{
|
|
Expr *checkconstr;
|
|
|
|
checkconstr = stringToNode(check[i].ccbin);
|
|
resultRelInfo->ri_ConstraintExprs[i] =
|
|
ExecPrepareExpr(checkconstr, estate);
|
|
}
|
|
MemoryContextSwitchTo(oldContext);
|
|
}
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* And evaluate the constraints */
|
|
for (i = 0; i < ncheck; i++)
|
|
{
|
|
ExprState *checkconstr = resultRelInfo->ri_ConstraintExprs[i];
|
|
|
|
/*
|
|
* NOTE: SQL specifies that a NULL result from a constraint expression
|
|
* is not to be treated as a failure. Therefore, use ExecCheck not
|
|
* ExecQual.
|
|
*/
|
|
if (!ExecCheck(checkconstr, econtext))
|
|
return check[i].ccname;
|
|
}
|
|
|
|
/* NULL result means no error */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecPartitionCheck --- check that tuple meets the partition constraint.
|
|
*/
|
|
static void
|
|
ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
|
|
EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
Bitmapset *modifiedCols;
|
|
Bitmapset *insertedCols;
|
|
Bitmapset *updatedCols;
|
|
ExprContext *econtext;
|
|
|
|
/*
|
|
* If first time through, build expression state tree for the partition
|
|
* check expression. Keep it in the per-query memory context so they'll
|
|
* survive throughout the query.
|
|
*/
|
|
if (resultRelInfo->ri_PartitionCheckExpr == NULL)
|
|
{
|
|
List *qual = resultRelInfo->ri_PartitionCheck;
|
|
|
|
resultRelInfo->ri_PartitionCheckExpr = ExecPrepareCheck(qual, estate);
|
|
}
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/*
|
|
* As in case of the catalogued constraints, we treat a NULL result as
|
|
* success here, not a failure.
|
|
*/
|
|
if (!ExecCheck(resultRelInfo->ri_PartitionCheckExpr, econtext))
|
|
{
|
|
char *val_desc;
|
|
Relation orig_rel = rel;
|
|
|
|
/* See the comment above. */
|
|
if (resultRelInfo->ri_PartitionRoot)
|
|
{
|
|
HeapTuple tuple = ExecFetchSlotTuple(slot);
|
|
TupleDesc old_tupdesc = RelationGetDescr(rel);
|
|
TupleConversionMap *map;
|
|
|
|
rel = resultRelInfo->ri_PartitionRoot;
|
|
tupdesc = RelationGetDescr(rel);
|
|
/* a reverse map */
|
|
map = convert_tuples_by_name(old_tupdesc, tupdesc,
|
|
gettext_noop("could not convert row type"));
|
|
if (map != NULL)
|
|
{
|
|
tuple = do_convert_tuple(tuple, map);
|
|
ExecStoreTuple(tuple, slot, InvalidBuffer, false);
|
|
}
|
|
}
|
|
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates partition constraint",
|
|
RelationGetRelationName(orig_rel)),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecConstraints - check constraints of the tuple in 'slot'
|
|
*
|
|
* This checks the traditional NOT NULL and check constraints, as well as
|
|
* the partition constraint, if any.
|
|
*
|
|
* Note: 'slot' contains the tuple to check the constraints of, which may
|
|
* have been converted from the original input tuple after tuple routing.
|
|
* 'resultRelInfo' is the original result relation, before tuple routing.
|
|
*/
|
|
void
|
|
ExecConstraints(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
TupleConstr *constr = tupdesc->constr;
|
|
Bitmapset *modifiedCols;
|
|
Bitmapset *insertedCols;
|
|
Bitmapset *updatedCols;
|
|
|
|
Assert(constr || resultRelInfo->ri_PartitionCheck);
|
|
|
|
if (constr && constr->has_not_null)
|
|
{
|
|
int natts = tupdesc->natts;
|
|
int attrChk;
|
|
|
|
for (attrChk = 1; attrChk <= natts; attrChk++)
|
|
{
|
|
if (tupdesc->attrs[attrChk - 1]->attnotnull &&
|
|
slot_attisnull(slot, attrChk))
|
|
{
|
|
char *val_desc;
|
|
Relation orig_rel = rel;
|
|
TupleDesc orig_tupdesc = RelationGetDescr(rel);
|
|
|
|
/*
|
|
* If the tuple has been routed, it's been converted to the
|
|
* partition's rowtype, which might differ from the root
|
|
* table's. We must convert it back to the root table's
|
|
* rowtype so that val_desc shown error message matches the
|
|
* input tuple.
|
|
*/
|
|
if (resultRelInfo->ri_PartitionRoot)
|
|
{
|
|
HeapTuple tuple = ExecFetchSlotTuple(slot);
|
|
TupleConversionMap *map;
|
|
|
|
rel = resultRelInfo->ri_PartitionRoot;
|
|
tupdesc = RelationGetDescr(rel);
|
|
/* a reverse map */
|
|
map = convert_tuples_by_name(orig_tupdesc, tupdesc,
|
|
gettext_noop("could not convert row type"));
|
|
if (map != NULL)
|
|
{
|
|
tuple = do_convert_tuple(tuple, map);
|
|
ExecStoreTuple(tuple, slot, InvalidBuffer, false);
|
|
}
|
|
}
|
|
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NOT_NULL_VIOLATION),
|
|
errmsg("null value in column \"%s\" violates not-null constraint",
|
|
NameStr(orig_tupdesc->attrs[attrChk - 1]->attname)),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
|
|
errtablecol(orig_rel, attrChk)));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (constr && constr->num_check > 0)
|
|
{
|
|
const char *failed;
|
|
|
|
if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
|
|
{
|
|
char *val_desc;
|
|
Relation orig_rel = rel;
|
|
|
|
/* See the comment above. */
|
|
if (resultRelInfo->ri_PartitionRoot)
|
|
{
|
|
HeapTuple tuple = ExecFetchSlotTuple(slot);
|
|
TupleDesc old_tupdesc = RelationGetDescr(rel);
|
|
TupleConversionMap *map;
|
|
|
|
rel = resultRelInfo->ri_PartitionRoot;
|
|
tupdesc = RelationGetDescr(rel);
|
|
/* a reverse map */
|
|
map = convert_tuples_by_name(old_tupdesc, tupdesc,
|
|
gettext_noop("could not convert row type"));
|
|
if (map != NULL)
|
|
{
|
|
tuple = do_convert_tuple(tuple, map);
|
|
ExecStoreTuple(tuple, slot, InvalidBuffer, false);
|
|
}
|
|
}
|
|
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(orig_rel), failed),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
|
|
errtableconstraint(orig_rel, failed)));
|
|
}
|
|
}
|
|
|
|
if (resultRelInfo->ri_PartitionCheck)
|
|
ExecPartitionCheck(resultRelInfo, slot, estate);
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs
|
|
* of the specified kind.
|
|
*
|
|
* Note that this needs to be called multiple times to ensure that all kinds of
|
|
* WITH CHECK OPTIONs are handled (both those from views which have the WITH
|
|
* CHECK OPTION set and from row level security policies). See ExecInsert()
|
|
* and ExecUpdate().
|
|
*/
|
|
void
|
|
ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
ExprContext *econtext;
|
|
ListCell *l1,
|
|
*l2;
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* Check each of the constraints */
|
|
forboth(l1, resultRelInfo->ri_WithCheckOptions,
|
|
l2, resultRelInfo->ri_WithCheckOptionExprs)
|
|
{
|
|
WithCheckOption *wco = (WithCheckOption *) lfirst(l1);
|
|
ExprState *wcoExpr = (ExprState *) lfirst(l2);
|
|
|
|
/*
|
|
* Skip any WCOs which are not the kind we are looking for at this
|
|
* time.
|
|
*/
|
|
if (wco->kind != kind)
|
|
continue;
|
|
|
|
/*
|
|
* WITH CHECK OPTION checks are intended to ensure that the new tuple
|
|
* is visible (in the case of a view) or that it passes the
|
|
* 'with-check' policy (in the case of row security). If the qual
|
|
* evaluates to NULL or FALSE, then the new tuple won't be included in
|
|
* the view or doesn't pass the 'with-check' policy for the table.
|
|
*/
|
|
if (!ExecQual(wcoExpr, econtext))
|
|
{
|
|
char *val_desc;
|
|
Bitmapset *modifiedCols;
|
|
Bitmapset *insertedCols;
|
|
Bitmapset *updatedCols;
|
|
|
|
switch (wco->kind)
|
|
{
|
|
/*
|
|
* For WITH CHECK OPTIONs coming from views, we might be
|
|
* able to provide the details on the row, depending on
|
|
* the permissions on the relation (that is, if the user
|
|
* could view it directly anyway). For RLS violations, we
|
|
* don't include the data since we don't know if the user
|
|
* should be able to view the tuple as as that depends on
|
|
* the USING policy.
|
|
*/
|
|
case WCO_VIEW_CHECK:
|
|
insertedCols = GetInsertedColumns(resultRelInfo, estate);
|
|
updatedCols = GetUpdatedColumns(resultRelInfo, estate);
|
|
modifiedCols = bms_union(insertedCols, updatedCols);
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION),
|
|
errmsg("new row violates check option for view \"%s\"",
|
|
wco->relname),
|
|
val_desc ? errdetail("Failing row contains %s.",
|
|
val_desc) : 0));
|
|
break;
|
|
case WCO_RLS_INSERT_CHECK:
|
|
case WCO_RLS_UPDATE_CHECK:
|
|
if (wco->polname != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy \"%s\" for table \"%s\"",
|
|
wco->polname, wco->relname)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy for table \"%s\"",
|
|
wco->relname)));
|
|
break;
|
|
case WCO_RLS_CONFLICT_CHECK:
|
|
if (wco->polname != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
|
|
wco->polname, wco->relname)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy (USING expression) for table \"%s\"",
|
|
wco->relname)));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized WCO kind: %u", wco->kind);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecBuildSlotValueDescription -- construct a string representing a tuple
|
|
*
|
|
* This is intentionally very similar to BuildIndexValueDescription, but
|
|
* unlike that function, we truncate long field values (to at most maxfieldlen
|
|
* bytes). That seems necessary here since heap field values could be very
|
|
* long, whereas index entries typically aren't so wide.
|
|
*
|
|
* Also, unlike the case with index entries, we need to be prepared to ignore
|
|
* dropped columns. We used to use the slot's tuple descriptor to decode the
|
|
* data, but the slot's descriptor doesn't identify dropped columns, so we
|
|
* now need to be passed the relation's descriptor.
|
|
*
|
|
* Note that, like BuildIndexValueDescription, if the user does not have
|
|
* permission to view any of the columns involved, a NULL is returned. Unlike
|
|
* BuildIndexValueDescription, if the user has access to view a subset of the
|
|
* column involved, that subset will be returned with a key identifying which
|
|
* columns they are.
|
|
*/
|
|
static char *
|
|
ExecBuildSlotValueDescription(Oid reloid,
|
|
TupleTableSlot *slot,
|
|
TupleDesc tupdesc,
|
|
Bitmapset *modifiedCols,
|
|
int maxfieldlen)
|
|
{
|
|
StringInfoData buf;
|
|
StringInfoData collist;
|
|
bool write_comma = false;
|
|
bool write_comma_collist = false;
|
|
int i;
|
|
AclResult aclresult;
|
|
bool table_perm = false;
|
|
bool any_perm = false;
|
|
|
|
/*
|
|
* Check if RLS is enabled and should be active for the relation; if so,
|
|
* then don't return anything. Otherwise, go through normal permission
|
|
* checks.
|
|
*/
|
|
if (check_enable_rls(reloid, InvalidOid, true) == RLS_ENABLED)
|
|
return NULL;
|
|
|
|
initStringInfo(&buf);
|
|
|
|
appendStringInfoChar(&buf, '(');
|
|
|
|
/*
|
|
* Check if the user has permissions to see the row. Table-level SELECT
|
|
* allows access to all columns. If the user does not have table-level
|
|
* SELECT then we check each column and include those the user has SELECT
|
|
* rights on. Additionally, we always include columns the user provided
|
|
* data for.
|
|
*/
|
|
aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
{
|
|
/* Set up the buffer for the column list */
|
|
initStringInfo(&collist);
|
|
appendStringInfoChar(&collist, '(');
|
|
}
|
|
else
|
|
table_perm = any_perm = true;
|
|
|
|
/* Make sure the tuple is fully deconstructed */
|
|
slot_getallattrs(slot);
|
|
|
|
for (i = 0; i < tupdesc->natts; i++)
|
|
{
|
|
bool column_perm = false;
|
|
char *val;
|
|
int vallen;
|
|
|
|
/* ignore dropped columns */
|
|
if (tupdesc->attrs[i]->attisdropped)
|
|
continue;
|
|
|
|
if (!table_perm)
|
|
{
|
|
/*
|
|
* No table-level SELECT, so need to make sure they either have
|
|
* SELECT rights on the column or that they have provided the data
|
|
* for the column. If not, omit this column from the error
|
|
* message.
|
|
*/
|
|
aclresult = pg_attribute_aclcheck(reloid, tupdesc->attrs[i]->attnum,
|
|
GetUserId(), ACL_SELECT);
|
|
if (bms_is_member(tupdesc->attrs[i]->attnum - FirstLowInvalidHeapAttributeNumber,
|
|
modifiedCols) || aclresult == ACLCHECK_OK)
|
|
{
|
|
column_perm = any_perm = true;
|
|
|
|
if (write_comma_collist)
|
|
appendStringInfoString(&collist, ", ");
|
|
else
|
|
write_comma_collist = true;
|
|
|
|
appendStringInfoString(&collist, NameStr(tupdesc->attrs[i]->attname));
|
|
}
|
|
}
|
|
|
|
if (table_perm || column_perm)
|
|
{
|
|
if (slot->tts_isnull[i])
|
|
val = "null";
|
|
else
|
|
{
|
|
Oid foutoid;
|
|
bool typisvarlena;
|
|
|
|
getTypeOutputInfo(tupdesc->attrs[i]->atttypid,
|
|
&foutoid, &typisvarlena);
|
|
val = OidOutputFunctionCall(foutoid, slot->tts_values[i]);
|
|
}
|
|
|
|
if (write_comma)
|
|
appendStringInfoString(&buf, ", ");
|
|
else
|
|
write_comma = true;
|
|
|
|
/* truncate if needed */
|
|
vallen = strlen(val);
|
|
if (vallen <= maxfieldlen)
|
|
appendStringInfoString(&buf, val);
|
|
else
|
|
{
|
|
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
appendStringInfoString(&buf, "...");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we end up with zero columns being returned, then return NULL. */
|
|
if (!any_perm)
|
|
return NULL;
|
|
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
if (!table_perm)
|
|
{
|
|
appendStringInfoString(&collist, ") = ");
|
|
appendStringInfoString(&collist, buf.data);
|
|
|
|
return collist.data;
|
|
}
|
|
|
|
return buf.data;
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a
|
|
* given ResultRelInfo
|
|
*/
|
|
LockTupleMode
|
|
ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
|
|
{
|
|
Bitmapset *keyCols;
|
|
Bitmapset *updatedCols;
|
|
|
|
/*
|
|
* Compute lock mode to use. If columns that are part of the key have not
|
|
* been modified, then we can use a weaker lock, allowing for better
|
|
* concurrency.
|
|
*/
|
|
updatedCols = GetUpdatedColumns(relinfo, estate);
|
|
keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc,
|
|
INDEX_ATTR_BITMAP_KEY);
|
|
|
|
if (bms_overlap(keyCols, updatedCols))
|
|
return LockTupleExclusive;
|
|
|
|
return LockTupleNoKeyExclusive;
|
|
}
|
|
|
|
/*
|
|
* ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
|
|
*
|
|
* If no such struct, either return NULL or throw error depending on missing_ok
|
|
*/
|
|
ExecRowMark *
|
|
ExecFindRowMark(EState *estate, Index rti, bool missing_ok)
|
|
{
|
|
ListCell *lc;
|
|
|
|
foreach(lc, estate->es_rowMarks)
|
|
{
|
|
ExecRowMark *erm = (ExecRowMark *) lfirst(lc);
|
|
|
|
if (erm->rti == rti)
|
|
return erm;
|
|
}
|
|
if (!missing_ok)
|
|
elog(ERROR, "failed to find ExecRowMark for rangetable index %u", rti);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecBuildAuxRowMark -- create an ExecAuxRowMark struct
|
|
*
|
|
* Inputs are the underlying ExecRowMark struct and the targetlist of the
|
|
* input plan node (not planstate node!). We need the latter to find out
|
|
* the column numbers of the resjunk columns.
|
|
*/
|
|
ExecAuxRowMark *
|
|
ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist)
|
|
{
|
|
ExecAuxRowMark *aerm = (ExecAuxRowMark *) palloc0(sizeof(ExecAuxRowMark));
|
|
char resname[32];
|
|
|
|
aerm->rowmark = erm;
|
|
|
|
/* Look up the resjunk columns associated with this rowmark */
|
|
if (erm->markType != ROW_MARK_COPY)
|
|
{
|
|
/* need ctid for all methods other than COPY */
|
|
snprintf(resname, sizeof(resname), "ctid%u", erm->rowmarkId);
|
|
aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist,
|
|
resname);
|
|
if (!AttributeNumberIsValid(aerm->ctidAttNo))
|
|
elog(ERROR, "could not find junk %s column", resname);
|
|
}
|
|
else
|
|
{
|
|
/* need wholerow if COPY */
|
|
snprintf(resname, sizeof(resname), "wholerow%u", erm->rowmarkId);
|
|
aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist,
|
|
resname);
|
|
if (!AttributeNumberIsValid(aerm->wholeAttNo))
|
|
elog(ERROR, "could not find junk %s column", resname);
|
|
}
|
|
|
|
/* if child rel, need tableoid */
|
|
if (erm->rti != erm->prti)
|
|
{
|
|
snprintf(resname, sizeof(resname), "tableoid%u", erm->rowmarkId);
|
|
aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist,
|
|
resname);
|
|
if (!AttributeNumberIsValid(aerm->toidAttNo))
|
|
elog(ERROR, "could not find junk %s column", resname);
|
|
}
|
|
|
|
return aerm;
|
|
}
|
|
|
|
|
|
/*
|
|
* EvalPlanQual logic --- recheck modified tuple(s) to see if we want to
|
|
* process the updated version under READ COMMITTED rules.
|
|
*
|
|
* See backend/executor/README for some info about how this works.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Check a modified tuple to see if we want to process its updated version
|
|
* under READ COMMITTED rules.
|
|
*
|
|
* estate - outer executor state data
|
|
* epqstate - state for EvalPlanQual rechecking
|
|
* relation - table containing tuple
|
|
* rti - rangetable index of table containing tuple
|
|
* lockmode - requested tuple lock mode
|
|
* *tid - t_ctid from the outdated tuple (ie, next updated version)
|
|
* priorXmax - t_xmax from the outdated tuple
|
|
*
|
|
* *tid is also an output parameter: it's modified to hold the TID of the
|
|
* latest version of the tuple (note this may be changed even on failure)
|
|
*
|
|
* Returns a slot containing the new candidate update/delete tuple, or
|
|
* NULL if we determine we shouldn't process the row.
|
|
*
|
|
* Note: properly, lockmode should be declared as enum LockTupleMode,
|
|
* but we use "int" to avoid having to include heapam.h in executor.h.
|
|
*/
|
|
TupleTableSlot *
|
|
EvalPlanQual(EState *estate, EPQState *epqstate,
|
|
Relation relation, Index rti, int lockmode,
|
|
ItemPointer tid, TransactionId priorXmax)
|
|
{
|
|
TupleTableSlot *slot;
|
|
HeapTuple copyTuple;
|
|
|
|
Assert(rti > 0);
|
|
|
|
/*
|
|
* Get and lock the updated version of the row; if fail, return NULL.
|
|
*/
|
|
copyTuple = EvalPlanQualFetch(estate, relation, lockmode, LockWaitBlock,
|
|
tid, priorXmax);
|
|
|
|
if (copyTuple == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* For UPDATE/DELETE we have to return tid of actual row we're executing
|
|
* PQ for.
|
|
*/
|
|
*tid = copyTuple->t_self;
|
|
|
|
/*
|
|
* Need to run a recheck subquery. Initialize or reinitialize EPQ state.
|
|
*/
|
|
EvalPlanQualBegin(epqstate, estate);
|
|
|
|
/*
|
|
* Free old test tuple, if any, and store new tuple where relation's scan
|
|
* node will see it
|
|
*/
|
|
EvalPlanQualSetTuple(epqstate, rti, copyTuple);
|
|
|
|
/*
|
|
* Fetch any non-locked source rows
|
|
*/
|
|
EvalPlanQualFetchRowMarks(epqstate);
|
|
|
|
/*
|
|
* Run the EPQ query. We assume it will return at most one tuple.
|
|
*/
|
|
slot = EvalPlanQualNext(epqstate);
|
|
|
|
/*
|
|
* If we got a tuple, force the slot to materialize the tuple so that it
|
|
* is not dependent on any local state in the EPQ query (in particular,
|
|
* it's highly likely that the slot contains references to any pass-by-ref
|
|
* datums that may be present in copyTuple). As with the next step, this
|
|
* is to guard against early re-use of the EPQ query.
|
|
*/
|
|
if (!TupIsNull(slot))
|
|
(void) ExecMaterializeSlot(slot);
|
|
|
|
/*
|
|
* Clear out the test tuple. This is needed in case the EPQ query is
|
|
* re-used to test a tuple for a different relation. (Not clear that can
|
|
* really happen, but let's be safe.)
|
|
*/
|
|
EvalPlanQualSetTuple(epqstate, rti, NULL);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* Fetch a copy of the newest version of an outdated tuple
|
|
*
|
|
* estate - executor state data
|
|
* relation - table containing tuple
|
|
* lockmode - requested tuple lock mode
|
|
* wait_policy - requested lock wait policy
|
|
* *tid - t_ctid from the outdated tuple (ie, next updated version)
|
|
* priorXmax - t_xmax from the outdated tuple
|
|
*
|
|
* Returns a palloc'd copy of the newest tuple version, or NULL if we find
|
|
* that there is no newest version (ie, the row was deleted not updated).
|
|
* We also return NULL if the tuple is locked and the wait policy is to skip
|
|
* such tuples.
|
|
*
|
|
* If successful, we have locked the newest tuple version, so caller does not
|
|
* need to worry about it changing anymore.
|
|
*
|
|
* Note: properly, lockmode should be declared as enum LockTupleMode,
|
|
* but we use "int" to avoid having to include heapam.h in executor.h.
|
|
*/
|
|
HeapTuple
|
|
EvalPlanQualFetch(EState *estate, Relation relation, int lockmode,
|
|
LockWaitPolicy wait_policy,
|
|
ItemPointer tid, TransactionId priorXmax)
|
|
{
|
|
HeapTuple copyTuple = NULL;
|
|
HeapTupleData tuple;
|
|
SnapshotData SnapshotDirty;
|
|
|
|
/*
|
|
* fetch target tuple
|
|
*
|
|
* Loop here to deal with updated or busy tuples
|
|
*/
|
|
InitDirtySnapshot(SnapshotDirty);
|
|
tuple.t_self = *tid;
|
|
for (;;)
|
|
{
|
|
Buffer buffer;
|
|
|
|
if (heap_fetch(relation, &SnapshotDirty, &tuple, &buffer, true, NULL))
|
|
{
|
|
HTSU_Result test;
|
|
HeapUpdateFailureData hufd;
|
|
|
|
/*
|
|
* If xmin isn't what we're expecting, the slot must have been
|
|
* recycled and reused for an unrelated tuple. This implies that
|
|
* the latest version of the row was deleted, so we need do
|
|
* nothing. (Should be safe to examine xmin without getting
|
|
* buffer's content lock. We assume reading a TransactionId to be
|
|
* atomic, and Xmin never changes in an existing tuple, except to
|
|
* invalid or frozen, and neither of those can match priorXmax.)
|
|
*/
|
|
if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
|
|
priorXmax))
|
|
{
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/* otherwise xmin should not be dirty... */
|
|
if (TransactionIdIsValid(SnapshotDirty.xmin))
|
|
elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
|
|
|
|
/*
|
|
* If tuple is being updated by other transaction then we have to
|
|
* wait for its commit/abort, or die trying.
|
|
*/
|
|
if (TransactionIdIsValid(SnapshotDirty.xmax))
|
|
{
|
|
ReleaseBuffer(buffer);
|
|
switch (wait_policy)
|
|
{
|
|
case LockWaitBlock:
|
|
XactLockTableWait(SnapshotDirty.xmax,
|
|
relation, &tuple.t_self,
|
|
XLTW_FetchUpdated);
|
|
break;
|
|
case LockWaitSkip:
|
|
if (!ConditionalXactLockTableWait(SnapshotDirty.xmax))
|
|
return NULL; /* skip instead of waiting */
|
|
break;
|
|
case LockWaitError:
|
|
if (!ConditionalXactLockTableWait(SnapshotDirty.xmax))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_LOCK_NOT_AVAILABLE),
|
|
errmsg("could not obtain lock on row in relation \"%s\"",
|
|
RelationGetRelationName(relation))));
|
|
break;
|
|
}
|
|
continue; /* loop back to repeat heap_fetch */
|
|
}
|
|
|
|
/*
|
|
* If tuple was inserted by our own transaction, we have to check
|
|
* cmin against es_output_cid: cmin >= current CID means our
|
|
* command cannot see the tuple, so we should ignore it. Otherwise
|
|
* heap_lock_tuple() will throw an error, and so would any later
|
|
* attempt to update or delete the tuple. (We need not check cmax
|
|
* because HeapTupleSatisfiesDirty will consider a tuple deleted
|
|
* by our transaction dead, regardless of cmax.) We just checked
|
|
* that priorXmax == xmin, so we can test that variable instead of
|
|
* doing HeapTupleHeaderGetXmin again.
|
|
*/
|
|
if (TransactionIdIsCurrentTransactionId(priorXmax) &&
|
|
HeapTupleHeaderGetCmin(tuple.t_data) >= estate->es_output_cid)
|
|
{
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This is a live tuple, so now try to lock it.
|
|
*/
|
|
test = heap_lock_tuple(relation, &tuple,
|
|
estate->es_output_cid,
|
|
lockmode, wait_policy,
|
|
false, &buffer, &hufd);
|
|
/* We now have two pins on the buffer, get rid of one */
|
|
ReleaseBuffer(buffer);
|
|
|
|
switch (test)
|
|
{
|
|
case HeapTupleSelfUpdated:
|
|
|
|
/*
|
|
* The target tuple was already updated or deleted by the
|
|
* current command, or by a later command in the current
|
|
* transaction. We *must* ignore the tuple in the former
|
|
* case, so as to avoid the "Halloween problem" of
|
|
* repeated update attempts. In the latter case it might
|
|
* be sensible to fetch the updated tuple instead, but
|
|
* doing so would require changing heap_update and
|
|
* heap_delete to not complain about updating "invisible"
|
|
* tuples, which seems pretty scary (heap_lock_tuple will
|
|
* not complain, but few callers expect
|
|
* HeapTupleInvisible, and we're not one of them). So for
|
|
* now, treat the tuple as deleted and do not process.
|
|
*/
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
|
|
case HeapTupleMayBeUpdated:
|
|
/* successfully locked */
|
|
break;
|
|
|
|
case HeapTupleUpdated:
|
|
ReleaseBuffer(buffer);
|
|
if (IsolationUsesXactSnapshot())
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
errmsg("could not serialize access due to concurrent update")));
|
|
|
|
/* Should not encounter speculative tuple on recheck */
|
|
Assert(!HeapTupleHeaderIsSpeculative(tuple.t_data));
|
|
if (!ItemPointerEquals(&hufd.ctid, &tuple.t_self))
|
|
{
|
|
/* it was updated, so look at the updated version */
|
|
tuple.t_self = hufd.ctid;
|
|
/* updated row should have xmin matching this xmax */
|
|
priorXmax = hufd.xmax;
|
|
continue;
|
|
}
|
|
/* tuple was deleted, so give up */
|
|
return NULL;
|
|
|
|
case HeapTupleWouldBlock:
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
|
|
case HeapTupleInvisible:
|
|
elog(ERROR, "attempted to lock invisible tuple");
|
|
|
|
default:
|
|
ReleaseBuffer(buffer);
|
|
elog(ERROR, "unrecognized heap_lock_tuple status: %u",
|
|
test);
|
|
return NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
/*
|
|
* We got tuple - now copy it for use by recheck query.
|
|
*/
|
|
copyTuple = heap_copytuple(&tuple);
|
|
ReleaseBuffer(buffer);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the referenced slot was actually empty, the latest version of
|
|
* the row must have been deleted, so we need do nothing.
|
|
*/
|
|
if (tuple.t_data == NULL)
|
|
{
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* As above, if xmin isn't what we're expecting, do nothing.
|
|
*/
|
|
if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
|
|
priorXmax))
|
|
{
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If we get here, the tuple was found but failed SnapshotDirty.
|
|
* Assuming the xmin is either a committed xact or our own xact (as it
|
|
* certainly should be if we're trying to modify the tuple), this must
|
|
* mean that the row was updated or deleted by either a committed xact
|
|
* or our own xact. If it was deleted, we can ignore it; if it was
|
|
* updated then chain up to the next version and repeat the whole
|
|
* process.
|
|
*
|
|
* As above, it should be safe to examine xmax and t_ctid without the
|
|
* buffer content lock, because they can't be changing.
|
|
*/
|
|
if (ItemPointerEquals(&tuple.t_self, &tuple.t_data->t_ctid))
|
|
{
|
|
/* deleted, so forget about it */
|
|
ReleaseBuffer(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/* updated, so look at the updated row */
|
|
tuple.t_self = tuple.t_data->t_ctid;
|
|
/* updated row should have xmin matching this xmax */
|
|
priorXmax = HeapTupleHeaderGetUpdateXid(tuple.t_data);
|
|
ReleaseBuffer(buffer);
|
|
/* loop back to fetch next in chain */
|
|
}
|
|
|
|
/*
|
|
* Return the copied tuple
|
|
*/
|
|
return copyTuple;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualInit -- initialize during creation of a plan state node
|
|
* that might need to invoke EPQ processing.
|
|
*
|
|
* Note: subplan/auxrowmarks can be NULL/NIL if they will be set later
|
|
* with EvalPlanQualSetPlan.
|
|
*/
|
|
void
|
|
EvalPlanQualInit(EPQState *epqstate, EState *estate,
|
|
Plan *subplan, List *auxrowmarks, int epqParam)
|
|
{
|
|
/* Mark the EPQ state inactive */
|
|
epqstate->estate = NULL;
|
|
epqstate->planstate = NULL;
|
|
epqstate->origslot = NULL;
|
|
/* ... and remember data that EvalPlanQualBegin will need */
|
|
epqstate->plan = subplan;
|
|
epqstate->arowMarks = auxrowmarks;
|
|
epqstate->epqParam = epqParam;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualSetPlan -- set or change subplan of an EPQState.
|
|
*
|
|
* We need this so that ModifyTable can deal with multiple subplans.
|
|
*/
|
|
void
|
|
EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
|
|
{
|
|
/* If we have a live EPQ query, shut it down */
|
|
EvalPlanQualEnd(epqstate);
|
|
/* And set/change the plan pointer */
|
|
epqstate->plan = subplan;
|
|
/* The rowmarks depend on the plan, too */
|
|
epqstate->arowMarks = auxrowmarks;
|
|
}
|
|
|
|
/*
|
|
* Install one test tuple into EPQ state, or clear test tuple if tuple == NULL
|
|
*
|
|
* NB: passed tuple must be palloc'd; it may get freed later
|
|
*/
|
|
void
|
|
EvalPlanQualSetTuple(EPQState *epqstate, Index rti, HeapTuple tuple)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
|
|
Assert(rti > 0);
|
|
|
|
/*
|
|
* free old test tuple, if any, and store new tuple where relation's scan
|
|
* node will see it
|
|
*/
|
|
if (estate->es_epqTuple[rti - 1] != NULL)
|
|
heap_freetuple(estate->es_epqTuple[rti - 1]);
|
|
estate->es_epqTuple[rti - 1] = tuple;
|
|
estate->es_epqTupleSet[rti - 1] = true;
|
|
}
|
|
|
|
/*
|
|
* Fetch back the current test tuple (if any) for the specified RTI
|
|
*/
|
|
HeapTuple
|
|
EvalPlanQualGetTuple(EPQState *epqstate, Index rti)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
|
|
Assert(rti > 0);
|
|
|
|
return estate->es_epqTuple[rti - 1];
|
|
}
|
|
|
|
/*
|
|
* Fetch the current row values for any non-locked relations that need
|
|
* to be scanned by an EvalPlanQual operation. origslot must have been set
|
|
* to contain the current result row (top-level row) that we need to recheck.
|
|
*/
|
|
void
|
|
EvalPlanQualFetchRowMarks(EPQState *epqstate)
|
|
{
|
|
ListCell *l;
|
|
|
|
Assert(epqstate->origslot != NULL);
|
|
|
|
foreach(l, epqstate->arowMarks)
|
|
{
|
|
ExecAuxRowMark *aerm = (ExecAuxRowMark *) lfirst(l);
|
|
ExecRowMark *erm = aerm->rowmark;
|
|
Datum datum;
|
|
bool isNull;
|
|
HeapTupleData tuple;
|
|
|
|
if (RowMarkRequiresRowShareLock(erm->markType))
|
|
elog(ERROR, "EvalPlanQual doesn't support locking rowmarks");
|
|
|
|
/* clear any leftover test tuple for this rel */
|
|
EvalPlanQualSetTuple(epqstate, erm->rti, NULL);
|
|
|
|
/* if child rel, must check whether it produced this row */
|
|
if (erm->rti != erm->prti)
|
|
{
|
|
Oid tableoid;
|
|
|
|
datum = ExecGetJunkAttribute(epqstate->origslot,
|
|
aerm->toidAttNo,
|
|
&isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull)
|
|
continue;
|
|
tableoid = DatumGetObjectId(datum);
|
|
|
|
Assert(OidIsValid(erm->relid));
|
|
if (tableoid != erm->relid)
|
|
{
|
|
/* this child is inactive right now */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (erm->markType == ROW_MARK_REFERENCE)
|
|
{
|
|
HeapTuple copyTuple;
|
|
|
|
Assert(erm->relation != NULL);
|
|
|
|
/* fetch the tuple's ctid */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot,
|
|
aerm->ctidAttNo,
|
|
&isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull)
|
|
continue;
|
|
|
|
/* fetch requests on foreign tables must be passed to their FDW */
|
|
if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
|
|
{
|
|
FdwRoutine *fdwroutine;
|
|
bool updated = false;
|
|
|
|
fdwroutine = GetFdwRoutineForRelation(erm->relation, false);
|
|
/* this should have been checked already, but let's be safe */
|
|
if (fdwroutine->RefetchForeignRow == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot lock rows in foreign table \"%s\"",
|
|
RelationGetRelationName(erm->relation))));
|
|
copyTuple = fdwroutine->RefetchForeignRow(epqstate->estate,
|
|
erm,
|
|
datum,
|
|
&updated);
|
|
if (copyTuple == NULL)
|
|
elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
|
|
|
|
/*
|
|
* Ideally we'd insist on updated == false here, but that
|
|
* assumes that FDWs can track that exactly, which they might
|
|
* not be able to. So just ignore the flag.
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
/* ordinary table, fetch the tuple */
|
|
Buffer buffer;
|
|
|
|
tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
|
|
if (!heap_fetch(erm->relation, SnapshotAny, &tuple, &buffer,
|
|
false, NULL))
|
|
elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
|
|
|
|
/* successful, copy tuple */
|
|
copyTuple = heap_copytuple(&tuple);
|
|
ReleaseBuffer(buffer);
|
|
}
|
|
|
|
/* store tuple */
|
|
EvalPlanQualSetTuple(epqstate, erm->rti, copyTuple);
|
|
}
|
|
else
|
|
{
|
|
HeapTupleHeader td;
|
|
|
|
Assert(erm->markType == ROW_MARK_COPY);
|
|
|
|
/* fetch the whole-row Var for the relation */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot,
|
|
aerm->wholeAttNo,
|
|
&isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull)
|
|
continue;
|
|
td = DatumGetHeapTupleHeader(datum);
|
|
|
|
/* build a temporary HeapTuple control structure */
|
|
tuple.t_len = HeapTupleHeaderGetDatumLength(td);
|
|
tuple.t_data = td;
|
|
/* relation might be a foreign table, if so provide tableoid */
|
|
tuple.t_tableOid = erm->relid;
|
|
/* also copy t_ctid in case there's valid data there */
|
|
tuple.t_self = td->t_ctid;
|
|
|
|
/* copy and store tuple */
|
|
EvalPlanQualSetTuple(epqstate, erm->rti,
|
|
heap_copytuple(&tuple));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fetch the next row (if any) from EvalPlanQual testing
|
|
*
|
|
* (In practice, there should never be more than one row...)
|
|
*/
|
|
TupleTableSlot *
|
|
EvalPlanQualNext(EPQState *epqstate)
|
|
{
|
|
MemoryContext oldcontext;
|
|
TupleTableSlot *slot;
|
|
|
|
oldcontext = MemoryContextSwitchTo(epqstate->estate->es_query_cxt);
|
|
slot = ExecProcNode(epqstate->planstate);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* Initialize or reset an EvalPlanQual state tree
|
|
*/
|
|
void
|
|
EvalPlanQualBegin(EPQState *epqstate, EState *parentestate)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
|
|
if (estate == NULL)
|
|
{
|
|
/* First time through, so create a child EState */
|
|
EvalPlanQualStart(epqstate, parentestate, epqstate->plan);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We already have a suitable child EPQ tree, so just reset it.
|
|
*/
|
|
int rtsize = list_length(parentestate->es_range_table);
|
|
PlanState *planstate = epqstate->planstate;
|
|
|
|
MemSet(estate->es_epqScanDone, 0, rtsize * sizeof(bool));
|
|
|
|
/* Recopy current values of parent parameters */
|
|
if (parentestate->es_plannedstmt->nParamExec > 0)
|
|
{
|
|
int i = parentestate->es_plannedstmt->nParamExec;
|
|
|
|
while (--i >= 0)
|
|
{
|
|
/* copy value if any, but not execPlan link */
|
|
estate->es_param_exec_vals[i].value =
|
|
parentestate->es_param_exec_vals[i].value;
|
|
estate->es_param_exec_vals[i].isnull =
|
|
parentestate->es_param_exec_vals[i].isnull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark child plan tree as needing rescan at all scan nodes. The
|
|
* first ExecProcNode will take care of actually doing the rescan.
|
|
*/
|
|
planstate->chgParam = bms_add_member(planstate->chgParam,
|
|
epqstate->epqParam);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start execution of an EvalPlanQual plan tree.
|
|
*
|
|
* This is a cut-down version of ExecutorStart(): we copy some state from
|
|
* the top-level estate rather than initializing it fresh.
|
|
*/
|
|
static void
|
|
EvalPlanQualStart(EPQState *epqstate, EState *parentestate, Plan *planTree)
|
|
{
|
|
EState *estate;
|
|
int rtsize;
|
|
MemoryContext oldcontext;
|
|
ListCell *l;
|
|
|
|
rtsize = list_length(parentestate->es_range_table);
|
|
|
|
epqstate->estate = estate = CreateExecutorState();
|
|
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* Child EPQ EStates share the parent's copy of unchanging state such as
|
|
* the snapshot, rangetable, result-rel info, and external Param info.
|
|
* They need their own copies of local state, including a tuple table,
|
|
* es_param_exec_vals, etc.
|
|
*
|
|
* The ResultRelInfo array management is trickier than it looks. We
|
|
* create a fresh array for the child but copy all the content from the
|
|
* parent. This is because it's okay for the child to share any
|
|
* per-relation state the parent has already created --- but if the child
|
|
* sets up any ResultRelInfo fields, such as its own junkfilter, that
|
|
* state must *not* propagate back to the parent. (For one thing, the
|
|
* pointed-to data is in a memory context that won't last long enough.)
|
|
*/
|
|
estate->es_direction = ForwardScanDirection;
|
|
estate->es_snapshot = parentestate->es_snapshot;
|
|
estate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot;
|
|
estate->es_range_table = parentestate->es_range_table;
|
|
estate->es_plannedstmt = parentestate->es_plannedstmt;
|
|
estate->es_junkFilter = parentestate->es_junkFilter;
|
|
estate->es_output_cid = parentestate->es_output_cid;
|
|
if (parentestate->es_num_result_relations > 0)
|
|
{
|
|
int numResultRelations = parentestate->es_num_result_relations;
|
|
ResultRelInfo *resultRelInfos;
|
|
|
|
resultRelInfos = (ResultRelInfo *)
|
|
palloc(numResultRelations * sizeof(ResultRelInfo));
|
|
memcpy(resultRelInfos, parentestate->es_result_relations,
|
|
numResultRelations * sizeof(ResultRelInfo));
|
|
estate->es_result_relations = resultRelInfos;
|
|
estate->es_num_result_relations = numResultRelations;
|
|
}
|
|
/* es_result_relation_info must NOT be copied */
|
|
/* es_trig_target_relations must NOT be copied */
|
|
estate->es_rowMarks = parentestate->es_rowMarks;
|
|
estate->es_top_eflags = parentestate->es_top_eflags;
|
|
estate->es_instrument = parentestate->es_instrument;
|
|
/* es_auxmodifytables must NOT be copied */
|
|
|
|
/*
|
|
* The external param list is simply shared from parent. The internal
|
|
* param workspace has to be local state, but we copy the initial values
|
|
* from the parent, so as to have access to any param values that were
|
|
* already set from other parts of the parent's plan tree.
|
|
*/
|
|
estate->es_param_list_info = parentestate->es_param_list_info;
|
|
if (parentestate->es_plannedstmt->nParamExec > 0)
|
|
{
|
|
int i = parentestate->es_plannedstmt->nParamExec;
|
|
|
|
estate->es_param_exec_vals = (ParamExecData *)
|
|
palloc0(i * sizeof(ParamExecData));
|
|
while (--i >= 0)
|
|
{
|
|
/* copy value if any, but not execPlan link */
|
|
estate->es_param_exec_vals[i].value =
|
|
parentestate->es_param_exec_vals[i].value;
|
|
estate->es_param_exec_vals[i].isnull =
|
|
parentestate->es_param_exec_vals[i].isnull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Each EState must have its own es_epqScanDone state, but if we have
|
|
* nested EPQ checks they should share es_epqTuple arrays. This allows
|
|
* sub-rechecks to inherit the values being examined by an outer recheck.
|
|
*/
|
|
estate->es_epqScanDone = (bool *) palloc0(rtsize * sizeof(bool));
|
|
if (parentestate->es_epqTuple != NULL)
|
|
{
|
|
estate->es_epqTuple = parentestate->es_epqTuple;
|
|
estate->es_epqTupleSet = parentestate->es_epqTupleSet;
|
|
}
|
|
else
|
|
{
|
|
estate->es_epqTuple = (HeapTuple *)
|
|
palloc0(rtsize * sizeof(HeapTuple));
|
|
estate->es_epqTupleSet = (bool *)
|
|
palloc0(rtsize * sizeof(bool));
|
|
}
|
|
|
|
/*
|
|
* Each estate also has its own tuple table.
|
|
*/
|
|
estate->es_tupleTable = NIL;
|
|
|
|
/*
|
|
* Initialize private state information for each SubPlan. We must do this
|
|
* before running ExecInitNode on the main query tree, since
|
|
* ExecInitSubPlan expects to be able to find these entries. Some of the
|
|
* SubPlans might not be used in the part of the plan tree we intend to
|
|
* run, but since it's not easy to tell which, we just initialize them
|
|
* all.
|
|
*/
|
|
Assert(estate->es_subplanstates == NIL);
|
|
foreach(l, parentestate->es_plannedstmt->subplans)
|
|
{
|
|
Plan *subplan = (Plan *) lfirst(l);
|
|
PlanState *subplanstate;
|
|
|
|
subplanstate = ExecInitNode(subplan, estate, 0);
|
|
estate->es_subplanstates = lappend(estate->es_subplanstates,
|
|
subplanstate);
|
|
}
|
|
|
|
/*
|
|
* Initialize the private state information for all the nodes in the part
|
|
* of the plan tree we need to run. This opens files, allocates storage
|
|
* and leaves us ready to start processing tuples.
|
|
*/
|
|
epqstate->planstate = ExecInitNode(planTree, estate, 0);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualEnd -- shut down at termination of parent plan state node,
|
|
* or if we are done with the current EPQ child.
|
|
*
|
|
* This is a cut-down version of ExecutorEnd(); basically we want to do most
|
|
* of the normal cleanup, but *not* close result relations (which we are
|
|
* just sharing from the outer query). We do, however, have to close any
|
|
* trigger target relations that got opened, since those are not shared.
|
|
* (There probably shouldn't be any of the latter, but just in case...)
|
|
*/
|
|
void
|
|
EvalPlanQualEnd(EPQState *epqstate)
|
|
{
|
|
EState *estate = epqstate->estate;
|
|
MemoryContext oldcontext;
|
|
ListCell *l;
|
|
|
|
if (estate == NULL)
|
|
return; /* idle, so nothing to do */
|
|
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
ExecEndNode(epqstate->planstate);
|
|
|
|
foreach(l, estate->es_subplanstates)
|
|
{
|
|
PlanState *subplanstate = (PlanState *) lfirst(l);
|
|
|
|
ExecEndNode(subplanstate);
|
|
}
|
|
|
|
/* throw away the per-estate tuple table */
|
|
ExecResetTupleTable(estate->es_tupleTable, false);
|
|
|
|
/* close any trigger target relations attached to this EState */
|
|
ExecCleanUpTriggerState(estate);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
FreeExecutorState(estate);
|
|
|
|
/* Mark EPQState idle */
|
|
epqstate->estate = NULL;
|
|
epqstate->planstate = NULL;
|
|
epqstate->origslot = NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecSetupPartitionTupleRouting - set up information needed during
|
|
* tuple routing for partitioned tables
|
|
*
|
|
* Output arguments:
|
|
* 'pd' receives an array of PartitionDispatch objects with one entry for
|
|
* every partitioned table in the partition tree
|
|
* 'partitions' receives an array of ResultRelInfo objects with one entry for
|
|
* every leaf partition in the partition tree
|
|
* 'tup_conv_maps' receives an array of TupleConversionMap objects with one
|
|
* entry for every leaf partition (required to convert input tuple based
|
|
* on the root table's rowtype to a leaf partition's rowtype after tuple
|
|
* routing is done
|
|
* 'partition_tuple_slot' receives a standalone TupleTableSlot to be used
|
|
* to manipulate any given leaf partition's rowtype after that partition
|
|
* is chosen by tuple-routing.
|
|
* 'num_parted' receives the number of partitioned tables in the partition
|
|
* tree (= the number of entries in the 'pd' output array)
|
|
* 'num_partitions' receives the number of leaf partitions in the partition
|
|
* tree (= the number of entries in the 'partitions' and 'tup_conv_maps'
|
|
* output arrays
|
|
*
|
|
* Note that all the relations in the partition tree are locked using the
|
|
* RowExclusiveLock mode upon return from this function.
|
|
*/
|
|
void
|
|
ExecSetupPartitionTupleRouting(Relation rel,
|
|
PartitionDispatch **pd,
|
|
ResultRelInfo **partitions,
|
|
TupleConversionMap ***tup_conv_maps,
|
|
TupleTableSlot **partition_tuple_slot,
|
|
int *num_parted, int *num_partitions)
|
|
{
|
|
TupleDesc tupDesc = RelationGetDescr(rel);
|
|
List *leaf_parts;
|
|
ListCell *cell;
|
|
int i;
|
|
ResultRelInfo *leaf_part_rri;
|
|
|
|
/* Get the tuple-routing information and lock partitions */
|
|
*pd = RelationGetPartitionDispatchInfo(rel, RowExclusiveLock, num_parted,
|
|
&leaf_parts);
|
|
*num_partitions = list_length(leaf_parts);
|
|
*partitions = (ResultRelInfo *) palloc(*num_partitions *
|
|
sizeof(ResultRelInfo));
|
|
*tup_conv_maps = (TupleConversionMap **) palloc0(*num_partitions *
|
|
sizeof(TupleConversionMap *));
|
|
|
|
/*
|
|
* Initialize an empty slot that will be used to manipulate tuples of any
|
|
* given partition's rowtype. It is attached to the caller-specified node
|
|
* (such as ModifyTableState) and released when the node finishes
|
|
* processing.
|
|
*/
|
|
*partition_tuple_slot = MakeTupleTableSlot();
|
|
|
|
leaf_part_rri = *partitions;
|
|
i = 0;
|
|
foreach(cell, leaf_parts)
|
|
{
|
|
Relation partrel;
|
|
TupleDesc part_tupdesc;
|
|
|
|
/*
|
|
* We locked all the partitions above including the leaf partitions.
|
|
* Note that each of the relations in *partitions are eventually
|
|
* closed by the caller.
|
|
*/
|
|
partrel = heap_open(lfirst_oid(cell), NoLock);
|
|
part_tupdesc = RelationGetDescr(partrel);
|
|
|
|
/*
|
|
* Verify result relation is a valid target for the current operation.
|
|
*/
|
|
CheckValidResultRel(partrel, CMD_INSERT);
|
|
|
|
/*
|
|
* Save a tuple conversion map to convert a tuple routed to this
|
|
* partition from the parent's type to the partition's.
|
|
*/
|
|
(*tup_conv_maps)[i] = convert_tuples_by_name(tupDesc, part_tupdesc,
|
|
gettext_noop("could not convert row type"));
|
|
|
|
InitResultRelInfo(leaf_part_rri,
|
|
partrel,
|
|
1, /* dummy */
|
|
rel,
|
|
0);
|
|
|
|
/*
|
|
* Open partition indices (remember we do not support ON CONFLICT in
|
|
* case of partitioned tables, so we do not need support information
|
|
* for speculative insertion)
|
|
*/
|
|
if (leaf_part_rri->ri_RelationDesc->rd_rel->relhasindex &&
|
|
leaf_part_rri->ri_IndexRelationDescs == NULL)
|
|
ExecOpenIndices(leaf_part_rri, false);
|
|
|
|
leaf_part_rri++;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecFindPartition -- Find a leaf partition in the partition tree rooted
|
|
* at parent, for the heap tuple contained in *slot
|
|
*
|
|
* estate must be non-NULL; we'll need it to compute any expressions in the
|
|
* partition key(s)
|
|
*
|
|
* If no leaf partition is found, this routine errors out with the appropriate
|
|
* error message, else it returns the leaf partition sequence number returned
|
|
* by get_partition_for_tuple() unchanged.
|
|
*/
|
|
int
|
|
ExecFindPartition(ResultRelInfo *resultRelInfo, PartitionDispatch *pd,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
int result;
|
|
PartitionDispatchData *failed_at;
|
|
TupleTableSlot *failed_slot;
|
|
|
|
/*
|
|
* First check the root table's partition constraint, if any. No point in
|
|
* routing the tuple it if it doesn't belong in the root table itself.
|
|
*/
|
|
if (resultRelInfo->ri_PartitionCheck)
|
|
ExecPartitionCheck(resultRelInfo, slot, estate);
|
|
|
|
result = get_partition_for_tuple(pd, slot, estate,
|
|
&failed_at, &failed_slot);
|
|
if (result < 0)
|
|
{
|
|
Relation failed_rel;
|
|
Datum key_values[PARTITION_MAX_KEYS];
|
|
bool key_isnull[PARTITION_MAX_KEYS];
|
|
char *val_desc;
|
|
ExprContext *ecxt = GetPerTupleExprContext(estate);
|
|
|
|
failed_rel = failed_at->reldesc;
|
|
ecxt->ecxt_scantuple = failed_slot;
|
|
FormPartitionKeyDatum(failed_at, failed_slot, estate,
|
|
key_values, key_isnull);
|
|
val_desc = ExecBuildSlotPartitionKeyDescription(failed_rel,
|
|
key_values,
|
|
key_isnull,
|
|
64);
|
|
Assert(OidIsValid(RelationGetRelid(failed_rel)));
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("no partition of relation \"%s\" found for row",
|
|
RelationGetRelationName(failed_rel)),
|
|
val_desc ? errdetail("Partition key of the failing row contains %s.", val_desc) : 0));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* BuildSlotPartitionKeyDescription
|
|
*
|
|
* This works very much like BuildIndexValueDescription() and is currently
|
|
* used for building error messages when ExecFindPartition() fails to find
|
|
* partition for a row.
|
|
*/
|
|
static char *
|
|
ExecBuildSlotPartitionKeyDescription(Relation rel,
|
|
Datum *values,
|
|
bool *isnull,
|
|
int maxfieldlen)
|
|
{
|
|
StringInfoData buf;
|
|
PartitionKey key = RelationGetPartitionKey(rel);
|
|
int partnatts = get_partition_natts(key);
|
|
int i;
|
|
Oid relid = RelationGetRelid(rel);
|
|
AclResult aclresult;
|
|
|
|
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
|
|
return NULL;
|
|
|
|
/* If the user has table-level access, just go build the description. */
|
|
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
{
|
|
/*
|
|
* Step through the columns of the partition key and make sure the
|
|
* user has SELECT rights on all of them.
|
|
*/
|
|
for (i = 0; i < partnatts; i++)
|
|
{
|
|
AttrNumber attnum = get_partition_col_attnum(key, i);
|
|
|
|
/*
|
|
* If this partition key column is an expression, we return no
|
|
* detail rather than try to figure out what column(s) the
|
|
* expression includes and if the user has SELECT rights on them.
|
|
*/
|
|
if (attnum == InvalidAttrNumber ||
|
|
pg_attribute_aclcheck(relid, attnum, GetUserId(),
|
|
ACL_SELECT) != ACLCHECK_OK)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
initStringInfo(&buf);
|
|
appendStringInfo(&buf, "(%s) = (",
|
|
pg_get_partkeydef_columns(relid, true));
|
|
|
|
for (i = 0; i < partnatts; i++)
|
|
{
|
|
char *val;
|
|
int vallen;
|
|
|
|
if (isnull[i])
|
|
val = "null";
|
|
else
|
|
{
|
|
Oid foutoid;
|
|
bool typisvarlena;
|
|
|
|
getTypeOutputInfo(get_partition_col_typid(key, i),
|
|
&foutoid, &typisvarlena);
|
|
val = OidOutputFunctionCall(foutoid, values[i]);
|
|
}
|
|
|
|
if (i > 0)
|
|
appendStringInfoString(&buf, ", ");
|
|
|
|
/* truncate if needed */
|
|
vallen = strlen(val);
|
|
if (vallen <= maxfieldlen)
|
|
appendStringInfoString(&buf, val);
|
|
else
|
|
{
|
|
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
appendStringInfoString(&buf, "...");
|
|
}
|
|
}
|
|
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
return buf.data;
|
|
}
|