Serious oversight in commit 16e1b7a1b7f7ffd8a18713e83c8cd72c9ce48e07:
we should not allow an interrupt to take control away from mainline code
except when ImmediateInterruptOK is set. Just to be safe, let's adopt
the same save-clear-restore dance that's been used for many years in
HandleCatchupInterrupt and HandleNotifyInterrupt, so that nothing bad
happens if a timeout handler invokes code that tests or even manipulates
ImmediateInterruptOK.
Per report of "stuck spinlock" failures from Christophe Pettus, though
many other symptoms are possible. Diagnosis by Andres Freund.
Prevent handle_sig_alarm from losing control partway through due to a query
cancel (either an asynchronous SIGINT, or a cancel triggered by one of the
timeout handler functions). That would at least result in failure to
schedule any required future interrupt, and might result in actual
corruption of timeout.c's data structures, if the interrupt happened while
we were updating those.
We could still lose control if an asynchronous SIGINT arrives just as the
function is entered. This wouldn't break any data structures, but it would
have the same effect as if the SIGALRM interrupt had been silently lost:
we'd not fire any currently-due handlers, nor schedule any new interrupt.
To forestall that scenario, forcibly reschedule any pending timer interrupt
during AbortTransaction and AbortSubTransaction. We can avoid any extra
kernel call in most cases by not doing that until we've allowed
LockErrorCleanup to kill the DEADLOCK_TIMEOUT and LOCK_TIMEOUT events.
Another hazard is that some platforms (at least Linux and *BSD) block a
signal before calling its handler and then unblock it on return. When we
longjmp out of the handler, the unblock doesn't happen, and the signal is
left blocked indefinitely. Again, we can fix that by forcibly unblocking
signals during AbortTransaction and AbortSubTransaction.
These latter two problems do not manifest when the longjmp reaches
postgres.c, because the error recovery code there kills all pending timeout
events anyway, and it uses sigsetjmp(..., 1) so that the appropriate signal
mask is restored. So errors thrown outside any transaction should be OK
already, and cleaning up in AbortTransaction and AbortSubTransaction should
be enough to fix these issues. (We're assuming that any code that catches
a query cancel error and doesn't re-throw it will do at least a
subtransaction abort to clean up; but that was pretty much required already
by other subsystems.)
Lastly, ProcSleep should not clear the LOCK_TIMEOUT indicator flag when
disabling that event: if a lock timeout interrupt happened after the lock
was granted, the ensuing query cancel is still going to happen at the next
CHECK_FOR_INTERRUPTS, and we want to report it as a lock timeout not a user
cancel.
Per reports from Dan Wood.
Back-patch to 9.3 where the new timeout handling infrastructure was
introduced. We may at some point decide to back-patch the signal
unblocking changes further, but I'll desist from that until we hear
actual field complaints about it.
Rather than doing a fairly-expensive setitimer() call to prevent interrupts
from happening, let's just invent a simple boolean flag that the signal
handler is required to check. This is not only faster but considerably
more robust than before, since the previous code effectively assumed that
only ITIMER_REAL events would ever fire the SIGALRM handler, which is
obviously something that can be broken easily by third-party code.
Zoltán Böszörményi and Tom Lane
We had two copies of this function in the backend and libpq, which was
already pretty bogus, but it turns out that we need it in some other
programs that don't use libpq (such as pg_test_fsync). So put it where
it probably should have been all along. The signal-mask-initialization
support in src/backend/libpq/pqsignal.c stays where it is, though, since
we only need that in the backend.
This GUC allows limiting the time spent waiting to acquire any one
heavyweight lock.
In support of this, improve the recently-added timeout infrastructure
to permit efficiently enabling or disabling multiple timeouts at once.
That reduces the performance hit from turning on lock_timeout, though
it's still not zero.
Zoltán Böszörményi, reviewed by Tom Lane,
Stephen Frost, and Hari Babu
Management of timeouts was getting a little cumbersome; what we
originally had was more than enough back when we were only concerned
about deadlocks and query cancel; however, when we added timeouts for
standby processes, the code got considerably messier. Since there are
plans to add more complex timeouts, this seems a good time to introduce
a central timeout handling module.
External modules register their timeout handlers during process
initialization, and later enable and disable them as they see fit using
a simple API; timeout.c is in charge of keeping track of which timeouts
are in effect at any time, installing a common SIGALRM signal handler,
and calling setitimer() as appropriate to ensure timely firing of
external handlers.
timeout.c additionally supports pluggable modules to add their own
timeouts, though this capability isn't exercised anywhere yet.
Additionally, as of this commit, walsender processes are aware of
timeouts; we had a preexisting bug there that made those ignore SIGALRM,
thus being subject to unhandled deadlocks, particularly during the
authentication phase. This has already been fixed in back branches in
commit 0bf8eb2a, which see for more details.
Main author: Zoltán Böszörményi
Some review and cleanup by Álvaro Herrera
Extensive reworking by Tom Lane