There are various things left to do: contrib dbsize and oid2name modules
need work, and so does the documentation. Also someone should think about
COMMENT ON TABLESPACE and maybe RENAME TABLESPACE. Also initlocation is
dead, it just doesn't know it yet.
Gavin Sherry and Tom Lane.
As a side effect, cause subscripts in INSERT targetlists to do something
more or less sensible; previously we evaluated such subscripts and then
effectively ignored them. Another side effect is that UPDATE-ing an
element or slice of an array value that is NULL now produces a non-null
result, namely an array containing just the assigned-to positions.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
rather than allowing them only in a few special cases as before. In
particular you can now pass a ROW() construct to a function that accepts
a rowtype parameter. Internal generation of RowExprs fixes a number of
corner cases that used to not work very well, such as referencing the
whole-row result of a JOIN or subquery. This represents a further step in
the work I started a month or so back to make rowtype values into
first-class citizens.
This simplifies and speeds up the reader by letting it get the representation
right the first time, rather than correcting it after-the-fact. Also,
after int and OID lists become separate node types per Neil's pending
patch, this will let us treat these lists as just plain Nodes instead
of requiring separate read/write macros the way we have now.
so that the 'val' is computed only once, per recent discussion. The
speedup is not much when 'val' is just a simple variable, but could be
significant for larger expressions. More importantly this avoids issues
with multiple evaluations of a volatile 'val', and it allows the CASE
expression to be reverse-listed in its original form by ruleutils.c.
for sure...). Rather than relying on the query context of a rangetable
entry to identify what permissions it wants checked, store a full AclMode
mask in each RTE, and check exactly those bits. This allows an RTE
specifying, say, INSERT privilege on a view to be copied into a derived
UPDATE query without changing meaning. Per recent discussion thread.
initdb forced due to change of stored rule representation.
regular qpqual ('filter condition'), add special-purpose code to
nodeIndexscan.c to recheck them. This ends being almost no net addition
of code, because the removal of planner code balances out the extra
executor code, but it is significantly more efficient when a lossy
operator is involved in an OR indexscan. The old implementation had
to recheck the entire indexqual in such cases.
with index qual clauses in the Path representation. This saves a little
work during createplan and (probably more importantly) allows reuse of
cached selectivity estimates during indexscan planning. Also fix latent
bug: wrong plan would have been generated for a 'special operator' used
in a nestloop-inner-indexscan join qual, because the special operator
would not have gotten into the list of quals to recheck. This bug is
only latent because at present the special-operator code could never
trigger on a join qual, but sooner or later someone will want to do it.
join conditions in which each OR subclause includes a constraint on
the same relation. This implements the other useful side-effect of
conversion to CNF format, without its unpleasant side-effects. As
per pghackers discussion of a few weeks ago.
teaching the latter to accept either RestrictInfo nodes or bare
clause expressions; and cache the selectivity result in the RestrictInfo
node when possible. This extends the caching behavior of approx_selectivity
to many more contexts, and should reduce duplicate selectivity
calculations.
first time generate an OR indexscan for a two-column index when the WHERE
condition is like 'col1 = foo AND (col2 = bar OR col2 = baz)' --- before,
the OR had to be on the first column of the index or we'd not notice the
possibility of using it. Some progress towards extracting OR indexscans
from subclauses of an OR that references multiple relations, too, although
this code is #ifdef'd out because it needs more work.
fields: now they are valid whenever the clause is a binary opclause,
not only when it is a potential join clause (there is a new boolean
field canjoin to signal the latter condition). This lets us avoid
recomputing the relid sets over and over while examining indexes.
Still more work to do to make this as useful as it could be, because
there are places that could use the info but don't have access to the
RestrictInfo node.
the hashclauses field of the parent HashJoin. This avoids problems with
duplicated links to SubPlans in hash clauses, as per report from
Andrew Holm-Hansen.
pghackers proposal of 8-Nov. All the existing cross-type comparison
operators (int2/int4/int8 and float4/float8) have appropriate support.
The original proposal of storing the right-hand-side datatype as part of
the primary key for pg_amop and pg_amproc got modified a bit in the event;
it is easier to store zero as the 'default' case and only store a nonzero
when the operator is actually cross-type. Along the way, remove the
long-since-defunct bigbox_ops operator class.
Remove the 'strategy map' code, which was a large amount of mechanism
that no longer had any use except reverse-mapping from procedure OID to
strategy number. Passing the strategy number to the index AM in the
first place is simpler and faster.
This is a preliminary step in planned support for cross-datatype index
operations. I'm committing it now since the ScanKeyEntryInitialize()
API change touches quite a lot of files, and I want to commit those
changes before the tree drifts under me.
be anything yielding an array of the proper kind, not only sub-ARRAY[]
constructs; do subscript checking at runtime not parse time. Also,
adjust array_cat to make array || array comply with the SQL99 spec.
Joe Conway
'scalar op ALL (array)', where the operator is applied between the
lefthand scalar and each element of the array. The operator must
yield boolean; the result of the construct is the OR or AND of the
per-element results, respectively.
Original coding by Joe Conway, after an idea of Peter's. Rewritten
by Tom to keep the implementation strictly separate from subqueries.
some cases of redundant clauses that were formerly not caught. We have
to special-case this because the clauses involved never get attached to
the same join restrictlist and so the existing logic does not notice
that they are redundant.
extensions to support our historical behavior. An aggregate belongs
to the closest query level of any of the variables in its argument,
or the current query level if there are no variables (e.g., COUNT(*)).
The implementation involves adding an agglevelsup field to Aggref,
and treating outer aggregates like outer variables at planning time.
of an index can now be a computed expression instead of a simple variable.
Restrictions on expressions are the same as for predicates (only immutable
functions, no sub-selects). This fixes problems recently introduced with
inlining SQL functions, because the inlining transformation is applied to
both expression trees so the planner can still match them up. Along the
way, improve efficiency of handling index predicates (both predicates and
index expressions are now cached by the relcache) and fix 7.3 oversight
that didn't record dependencies of predicate expressions.
the column by table OID and column number, if it's a simple column
reference. Along the way, get rid of reskey/reskeyop fields in Resdoms.
Turns out that representation was not convenient for either the planner
or the executor; we can make the planner deliver exactly what the
executor wants with no more effort.
initdb forced due to change in stored rule representation.
Both plannable queries and utility commands are now always executed
within Portals, which have been revamped so that they can handle the
load (they used to be good only for single SELECT queries). Restructure
code to push command-completion-tag selection logic out of postgres.c,
so that it won't have to be duplicated between simple and extended queries.
initdb forced due to addition of a field to Query nodes.
rewritten and the protocol is changed, but most elog calls are still
elog calls. Also, we need to contemplate mechanisms for controlling
all this functionality --- eg, how much stuff should appear in the
postmaster log? And what API should libpq expose for it?
expressions, ARRAY(sub-SELECT) expressions, some array functions.
Polymorphic functions using ANYARRAY/ANYELEMENT argument and return
types. Some regression tests in place, documentation is lacking.
Joe Conway, with some kibitzing from Tom Lane.
utility statement (DeclareCursorStmt) with a SELECT query dangling from
it, rather than a SELECT query with a few unusual fields in it. Add
code to determine whether a planned query can safely be run backwards.
If DECLARE CURSOR specifies SCROLL, ensure that the plan can be run
backwards by adding a Materialize plan node if it can't. Without SCROLL,
you get an error if you try to fetch backwards from a cursor that can't
handle it. (There is still some discussion about what the exact
behavior should be, but this is necessary infrastructure in any case.)
Along the way, make EXPLAIN DECLARE CURSOR work.
codes, per discussion from last March. parse.h should now be included
*only* by gram.y, scan.l, keywords.c, parser.c. This prevents surprising
misbehavior after seemingly-trivial grammar adjustments.
rid of the assumption that sizeof(Oid)==sizeof(int). This is one small
step towards someday supporting 8-byte OIDs. For the moment, it doesn't
do much except get rid of a lot of unsightly casts.
locParam lists can be converted to bitmapsets to speed updating. Also,
replace 'locParam' with 'allParam', which contains all the paramIDs
relevant to the node (i.e., the union of extParam and locParam); this
saves a step during SetChangedParamList() without costing anything
elsewhere.
startup, not in the parser; this allows ALTER DOMAIN to work correctly
with domain constraint operations stored in rules. Rod Taylor;
code review by Tom Lane.
There are two implementation techniques: the executor understands a new
JOIN_IN jointype, which emits at most one matching row per left-hand row,
or the result of the IN's sub-select can be fed through a DISTINCT filter
and then joined as an ordinary relation.
Along the way, some minor code cleanup in the optimizer; notably, break
out most of the jointree-rearrangement preprocessing in planner.c and
put it in a new file prep/prepjointree.c.
containing a volatile function), rather than only on 'Var = Var' clauses
as before. This makes it practical to do flatten_join_alias_vars at the
start of planning, which in turn eliminates a bunch of klugery inside the
planner to deal with alias vars. As a free side effect, we now detect
implied equality of non-Var expressions; for example in
SELECT ... WHERE a.x = b.y and b.y = 42
we will deduce a.x = 42 and use that as a restriction qual on a. Also,
we can remove the restriction introduced 12/5/02 to prevent pullup of
subqueries whose targetlists contain sublinks.
Still TODO: make statistical estimation routines in selfuncs.c and costsize.c
smarter about expressions that are more complex than plain Vars. The need
for this is considerably greater now that we have to be able to estimate
the suitability of merge and hash join techniques on such expressions.
Simplify SubLink by storing just a List of operator OIDs, instead of
a list of incomplete OpExprs --- that was a bizarre and bulky choice,
with no redeeming social value since we have to build new OpExprs
anyway when forming the plan tree.
'NOT (x IN (subselect))', that is 'NOT (x = ANY (subselect))',
rather than 'x <> ALL (subselect)' as we formerly did. This
opens the door to optimizing NOT IN the same way as IN, whereas
there's no hope of optimizing the expression using <>. Also,
convert 'x <> ALL (subselect)' to the NOT(IN) style, so that
the optimization will be available when processing rules dumped
by older Postgres versions.
initdb forced due to small change in SubLink node representation.