This introduces the SQL/JSON functions for querying JSON data using
jsonpath expressions. The functions are:
JSON_EXISTS()
JSON_QUERY()
JSON_VALUE()
All of these functions only operate on jsonb. The workaround for now is
to cast the argument to jsonb.
JSON_EXISTS() tests if the jsonpath expression applied to the jsonb
value yields any values. JSON_VALUE() must return a single value, and an
error occurs if it tries to return multiple values. JSON_QUERY() must
return a json object or array, and there are various WRAPPER options for
handling scalar or multi-value results. Both these functions have
options for handling EMPTY and ERROR conditions.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This patch intrdocuces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON as well as on the json and
jsonb types. Each test has an IS and IS NOT variant. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
IS JSON WITH | WITHOUT UNIQUE KEYS
These are mostly self-explanatory, but note that IS JSON WITHOUT UNIQUE
KEYS is true whenever IS JSON is true, and IS JSON WITH UNIQUE KEYS is
true whenever IS JSON is true except it IS JSON OBJECT is true and there
are duplicate keys (which is never the case when applied to jsonb values).
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements. For example,
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.
MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead. MERGE can be used from PL/pgSQL.
MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either. These limitations are likely
fixable with sufficient effort. Rewrite rules are also not supported,
but it's not clear that we'd want to support them.
Author: Pavan Deolasee <pavan.deolasee@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Simon Riggs <simon.riggs@enterprisedb.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions)
Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions)
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: Japin Li <japinli@hotmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql
This patch introduces the SQL/JSON standard constructors for JSON:
JSON()
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
For the most part these functions provide facilities that mimic
existing json/jsonb functions. However, they also offer some useful
additional functionality. In addition to text input, the JSON() function
accepts bytea input, which it will decode and constuct a json value from.
The other functions provide useful options for handling duplicate keys
and null values.
This series of patches will be followed by a consolidated documentation
patch.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.
The following SQL/JSON patches will leverage these.
Nikita Glukhov (who probably deserves an award for perseverance).
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.
The following SQL/JSON patches will leverage these.
Nikita Glukhov (who probably deserves an award for perseverance).
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup. Erik Rijkers, Zihong Yu and
Himanshu Upadhyaya.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
The SQL standard has been ambiguous about whether null values in
unique constraints should be considered equal or not. Different
implementations have different behaviors. In the SQL:202x draft, this
has been formalized by making this implementation-defined and adding
an option on unique constraint definitions UNIQUE [ NULLS [NOT]
DISTINCT ] to choose a behavior explicitly.
This patch adds this option to PostgreSQL. The default behavior
remains UNIQUE NULLS DISTINCT. Making this happen in the btree code
is pretty easy; most of the patch is just to carry the flag around to
all the places that need it.
The CREATE UNIQUE INDEX syntax extension is not from the standard,
it's my own invention.
I named all the internal flags, catalog columns, etc. in the negative
("nulls not distinct") so that the default PostgreSQL behavior is the
default if the flag is false.
Reviewed-by: Maxim Orlov <orlovmg@gmail.com>
Reviewed-by: Pavel Borisov <pashkin.elfe@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/84e5ee1b-387e-9a54-c326-9082674bde78@enterprisedb.com
Before, SQL-level boolean constants were represented by a string with
a cast, and internal Boolean values in DDL commands were usually
represented by Integer nodes. This takes the place of both of these
uses, making the intent clearer and having some amount of type safety.
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/8c1a2e37-c68d-703c-5a83-7a6077f4f997@enterprisedb.com
Commit 4ace45677 failed to fix the problem fully, because the
same issue of attempting to fetch a non-returnable index column
can occur when rechecking the indexqual after using a lossy index
operator. Moreover, it broke EXPLAIN for such indexquals (which
indicates a gap in our test cases :-().
Revert the code changes of 4ace45677 in favor of adding a new field
to struct IndexOnlyScan, containing a version of the indexqual that
can be executed against the index-returned tuple without using any
non-returnable columns. (The restrictions imposed by check_index_only
guarantee this is possible, although we may have to recompute indexed
expressions.) Support construction of that during setrefs.c
processing by marking IndexOnlyScan.indextlist entries as resjunk
if they can't be returned, rather than removing them entirely.
(We could alternatively require setrefs.c to look up the IndexOptInfo
again, but abusing resjunk this way seems like a reasonably safe way
to avoid needing to do that.)
This solution isn't great from an API-stability standpoint: if there
are any extensions out there that build IndexOnlyScan structs directly,
they'll be broken in the next minor releases. However, only a very
invasive extension would be likely to do such a thing. There's no
change in the Path representation, so typical planner extensions
shouldn't have a problem.
As before, back-patch to all supported branches.
Discussion: https://postgr.es/m/3179992.1641150853@sss.pgh.pa.us
Discussion: https://postgr.es/m/17350-b5bdcf476e5badbb@postgresql.org
Extend the foreign key ON DELETE actions SET NULL and SET DEFAULT by
allowing the specification of a column list, like
CREATE TABLE posts (
...
FOREIGN KEY (tenant_id, author_id) REFERENCES users ON DELETE SET NULL (author_id)
);
If a column list is specified, only those columns are set to
null/default, instead of all the columns in the foreign-key
constraint.
This is useful for multitenant or sharded schemas, where the tenant or
shard ID is included in the primary key of all tables but shouldn't be
set to null.
Author: Paul Martinez <paulmtz@google.com>
Discussion: https://www.postgresql.org/message-id/flat/CACqFVBZQyMYJV=njbSMxf+rbDHpx=W=B7AEaMKn8dWn9OZJY7w@mail.gmail.com
It's possible that a subplan below a Memoize node contains a parameter
from above the Memoize node. If this parameter changes then cache entries
may become out-dated due to the new parameter value.
Previously Memoize was mistakenly not aware of this. We fix this here by
flushing the cache whenever a parameter that's not part of the cache
key changes.
Bug: #17213
Reported by: Elvis Pranskevichus
Author: David Rowley
Discussion: https://postgr.es/m/17213-988ed34b225a2862@postgresql.org
Backpatch-through: 14, where Memoize was added
Memoize would always use the hash equality operator for the cache key
types to determine if the current set of parameters were the same as some
previously cached set. Certain types such as floating points where -0.0
and +0.0 differ in their binary representation but are classed as equal by
the hash equality operator may cause problems as unless the join uses the
same operator it's possible that whichever join operator is being used
would be able to distinguish the two values. In which case we may
accidentally return in the incorrect rows out of the cache.
To fix this here we add a binary mode to Memoize to allow it to the
current set of parameters to previously cached values by comparing
bit-by-bit rather than logically using the hash equality operator. This
binary mode is always used for LATERAL joins and it's used for normal
joins when any of the join operators are not hashable.
Reported-by: Tom Lane
Author: David Rowley
Discussion: https://postgr.es/m/3004308.1632952496@sss.pgh.pa.us
Backpatch-through: 14, where Memoize was added
In v14, because we don't have a field in RestrictInfo to cache both the
left and right type's hash equality operator, we just restrict the scope
of Memoize to only when the left and right types of a RestrictInfo are the
same.
In master we add another field to RestrictInfo and cache both hash
equality operators.
Reported-by: Jaime Casanova
Author: David Rowley
Discussion: https://postgr.es/m/20210929185544.GB24346%40ahch-to
Backpatch-through: 14
Up to now the size of a query's rangetable has been limited by the
constants INNER_VAR et al, which mustn't be equal to any real
rangetable index. 65000 doubtless seemed like enough for anybody,
and it still is orders of magnitude larger than the number of joins
we can realistically handle. However, we need a rangetable entry
for each child partition that is (or might be) processed by a query.
Queries with a few thousand partitions are getting more realistic,
so that the day when that limit becomes a problem is in sight,
even if it's not here yet. Hence, let's raise the limit.
Rather than just increase the values of INNER_VAR et al, this patch
adopts the approach of making them small negative values, so that
rangetables could theoretically become as long as INT_MAX.
The bulk of the patch is concerned with changing Var.varno and some
related variables from "Index" (unsigned int) to plain "int". This
is basically cosmetic, with little actual effect other than to help
debuggers print their values nicely. As such, I've only bothered
with changing places that could actually see INNER_VAR et al, which
the parser and most of the planner don't. We do have to be careful
in places that are performing less/greater comparisons on varnos,
but there are very few such places, other than the IS_SPECIAL_VARNO
macro itself.
A notable side effect of this patch is that while it used to be
possible to add INNER_VAR et al to a Bitmapset, that will now
draw an error. I don't see any likelihood that it wouldn't be a
bug to include these fake varnos in a bitmapset of real varnos,
so I think this is all to the good.
Although this touches outfuncs/readfuncs, I don't think a catversion
bump is required, since stored rules would never contain Vars
with these fake varnos.
Andrey Lepikhov and Tom Lane, after a suggestion by Peter Eisentraut
Discussion: https://postgr.es/m/43c7f2f5-1e27-27aa-8c65-c91859d15190@postgrespro.ru
In most cases, the prefix string in a node output is the upper case of
the node structure name, e.g., MergeAppend -> MERGEAPPEND. There were
a few exceptions that for either no apparent reason or perhaps minor
aesthetic reasons deviated from this. In order to simplify this and
perhaps allow automatic generation without having to deal with
exception cases, make them all match.
Discussion: https://www.postgresql.org/message-id/c091e5cd-45f8-69ee-6a9b-de86912cc7e7@enterprisedb.com
We have a few WRITE_{name of type}_ARRAY macros, but the one case
using the Index type was hand-coded. Wrap it into a macro as well.
This also changes the behavior slightly: Before, the field name was
skipped if the length was zero. Now it prints the field name even in
that case. This is more consistent with how other array fields are
handled.
Reviewed-by: Jacob Champion <pchampion@vmware.com>
Discussion: https://www.postgresql.org/message-id/c091e5cd-45f8-69ee-6a9b-de86912cc7e7@enterprisedb.com
The Value node struct is a weird construct. It is its own node type,
but most of the time, it actually has a node type of Integer, Float,
String, or BitString. As a consequence, the struct name and the node
type don't match most of the time, and so it has to be treated
specially a lot. There doesn't seem to be any value in the special
construct. There is very little code that wants to accept all Value
variants but nothing else (and even if it did, this doesn't provide
any convenient way to check it), and most code wants either just one
particular node type (usually String), or it accepts a broader set of
node types besides just Value.
This change removes the Value struct and node type and replaces them
by separate Integer, Float, String, and BitString node types that are
proper node types and structs of their own and behave mostly like
normal node types.
Also, this removes the T_Null node tag, which was previously also a
possible variant of Value but wasn't actually used outside of the
Value contained in A_Const. Replace that by an isnull field in
A_Const.
Reviewed-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org>
Reviewed-by: Kyotaro Horiguchi <horikyota.ntt@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/5ba6bc5b-3f95-04f2-2419-f8ddb4c046fb@enterprisedb.com
For partitioned tables with large numbers of partitions where queries are
able to prune all but a very small number of partitions, the time spent in
the planner looping over RelOptInfo.part_rels checking for non-NULL
RelOptInfos could become a large portion of the overall planning time.
Here we add a Bitmapset that records the non-pruned partitions. This
allows us to more efficiently skip the pruned partitions by looping over
the Bitmapset.
This will cause a very slight slow down in cases where no or not many
partitions could be pruned, however, those cases are already slow to plan
anyway and the overhead of looping over the Bitmapset would be
unmeasurable when compared with the other tasks such as path creation for
a large number of partitions.
Reviewed-by: Amit Langote, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvqnPx6JnUuPwaf5ao38zczrAb9mxt9gj4U1EKFfd4AqLA@mail.gmail.com
"Result Cache" was never a great name for this node, but nobody managed
to come up with another name that anyone liked enough. That was until
David Johnston mentioned "Node Memoization", which Tom Lane revised to
just "Memoize". People seem to like "Memoize", so let's do the rename.
Reviewed-by: Justin Pryzby
Discussion: https://postgr.es/m/20210708165145.GG1176@momjian.us
Backpatch-through: 14, where Result Cache was introduced
Similar to 50e17ad28, which allowed hash tables to be used for IN clauses
with a set of constants, here we add the same feature for NOT IN clauses.
NOT IN evaluates the same as: WHERE a <> v1 AND a <> v2 AND a <> v3.
Obviously, if we're using a hash table we must be exactly equivalent to
that and return the same result taking into account that either side of
the condition could contain a NULL. This requires a little bit of
special handling to make work with the hash table version.
When processing NOT IN, the ScalarArrayOpExpr's operator will be the <>
operator. To be able to build and lookup a hash table we must use the
<>'s negator operator. The planner checks if that exists and is hashable
and sets the relevant fields in ScalarArrayOpExpr to instruct the executor
to use hashing.
Author: David Rowley, James Coleman
Reviewed-by: James Coleman, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvoF1mum_FRk6D621edcB6KSHBi2+GAgWmioj5AhOu2vwQ@mail.gmail.com
Commit a4d75c86bf added a new flag, tracking if the statement was
processed by transformStatsStmt(), but failed to add this flag to
nodes/*funcs.c.
Catversion bump, due to adding a flag to copy/equal/out functions.
Reported-by: Noah Misch
Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE
list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present.
If it happens, the ON CONFLICT UPDATE code path would end up storing
tuples that include the values of the extra resjunk columns. That's
fairly harmless in the short run, but if new columns are added to
the table then the values would become accessible, possibly leading
to malfunctions if they don't match the datatypes of the new columns.
This had escaped notice through a confluence of missing sanity checks,
including
* There's no cross-check that a tuple presented to heap_insert or
heap_update matches the table rowtype. While it's difficult to
check that fully at reasonable cost, we can easily add assertions
that there aren't too many columns.
* The output-column-assignment cases in execExprInterp.c lacked
any sanity checks on the output column numbers, which seems like
an oversight considering there are plenty of assertion checks on
input column numbers. Add assertions there too.
* We failed to apply nodeModifyTable's ExecCheckPlanOutput() to
the ON CONFLICT UPDATE tlist. That wouldn't have caught this
specific error, since that function is chartered to ignore resjunk
columns; but it sure seems like a bad omission now that we've seen
this bug.
In HEAD, the right way to fix this is to make the processing of
ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists
now do, that is don't add "SET x = x" entries, and use
ExecBuildUpdateProjection to evaluate the tlist and combine it with
old values of the not-set columns. This adds a little complication
to ExecBuildUpdateProjection, but allows removal of a comparable
amount of now-dead code from the planner.
In the back branches, the most expedient solution seems to be to
(a) use an output slot for the ON CONFLICT UPDATE projection that
actually matches the target table, and then (b) invent a variant of
ExecBuildProjectionInfo that can be told to not store values resulting
from resjunk columns, so it doesn't try to store into nonexistent
columns of the output slot. (We can't simply ignore the resjunk columns
altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.)
This works back to v10. In 9.6, projections work much differently and
we can't cheaply give them such an option. The 9.6 version of this
patch works by inserting a JunkFilter when it's necessary to get rid
of resjunk columns.
In addition, v11 and up have the reverse problem when trying to
perform ON CONFLICT UPDATE on a partitioned table. Through a
further oversight, adjust_partition_tlist() discarded resjunk columns
when re-ordering the ON CONFLICT UPDATE tlist to match a partition.
This accidentally prevented the storing-bogus-tuples problem, but
at the cost that MULTIEXPR_SUBLINK cases didn't work, typically
crashing if more than one row has to be updated. Fix by preserving
resjunk columns in that routine. (I failed to resist the temptation
to add more assertions there too, and to do some minor code
beautification.)
Per report from Andres Freund. Back-patch to all supported branches.
Security: CVE-2021-32028
ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand
side have traditionally been evaluated by using a linear search over the
array. When these arrays contain large numbers of elements then this
linear search could become a significant part of execution time.
Here we add a new method of evaluating ScalarArrayOpExpr expressions to
allow them to be evaluated by first building a hash table containing each
element, then on subsequent evaluations, we just probe that hash table to
determine if there is a match.
The planner is in charge of determining when this optimization is possible
and it enables it by setting hashfuncid in the ScalarArrayOpExpr. The
executor will only perform the hash table evaluation when the hashfuncid
is set.
This means that not all cases are optimized. For example CHECK constraints
containing an IN clause won't go through the planner, so won't get the
hashfuncid set. We could maybe do something about that at some later
date. The reason we're not doing it now is from fear that we may slow
down cases where the expression is evaluated only once. Those cases can
be common, for example, a single row INSERT to a table with a CHECK
constraint containing an IN clause.
In the planner, we enable this when there are suitable hash functions for
the ScalarArrayOpExpr's operator and only when there is at least
MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array. The threshold is
currently set to 9.
Author: James Coleman, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas
Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
This adds support for writing CREATE FUNCTION and CREATE PROCEDURE
statements for language SQL with a function body that conforms to the
SQL standard and is portable to other implementations.
Instead of the PostgreSQL-specific AS $$ string literal $$ syntax,
this allows writing out the SQL statements making up the body
unquoted, either as a single statement:
CREATE FUNCTION add(a integer, b integer) RETURNS integer
LANGUAGE SQL
RETURN a + b;
or as a block
CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
BEGIN ATOMIC
INSERT INTO tbl VALUES (a);
INSERT INTO tbl VALUES (b);
END;
The function body is parsed at function definition time and stored as
expression nodes in a new pg_proc column prosqlbody. So at run time,
no further parsing is required.
However, this form does not support polymorphic arguments, because
there is no more parse analysis done at call time.
Dependencies between the function and the objects it uses are fully
tracked.
A new RETURN statement is introduced. This can only be used inside
function bodies. Internally, it is treated much like a SELECT
statement.
psql needs some new intelligence to keep track of function body
boundaries so that it doesn't send off statements when it sees
semicolons that are inside a function body.
Tested-by: Jaime Casanova <jcasanov@systemguards.com.ec>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/1c11f1eb-f00c-43b7-799d-2d44132c02d7@2ndquadrant.com
Here we add a new executor node type named "Result Cache". The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins. This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again. Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.
For certain data sets, this can significantly improve the performance of
joins. The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join. In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch. Merge joins would have to
skip over all of the unmatched rows. If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join. The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large. Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join. This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does. The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables. Smaller hash tables generally perform better.
The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size. We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.
For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node. We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be. Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.
For now, the planner will only consider using a result cache for
parameterized nested loop joins. This works for both normal joins and
also for LATERAL type joins to subqueries. It is possible to use this new
node for other uses in the future. For example, to cache results from
correlated subqueries. However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio. Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.
The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations. With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be. In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%. Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join. However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values. If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join. Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature. Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.
For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache. However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default. There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression. Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default. It remains to be seen if we'll
maintain that setting for the release.
Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch. Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people. If there's some consensus on a better name, then we can
change it before the release. Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.
Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
This removes "Add Result Cache executor node". It seems that something
weird is going on with the tracking of cache hits and misses as
highlighted by many buildfarm animals. It's not yet clear what the
problem is as other parts of the plan indicate that the cache did work
correctly, it's just the hits and misses that were being reported as 0.
This is especially a bad time to have the buildfarm so broken, so
reverting before too many more animals go red.
Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com
Here we add a new executor node type named "Result Cache". The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins. This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again. Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.
For certain data sets, this can significantly improve the performance of
joins. The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join. In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch. Merge joins would have to
skip over all of the unmatched rows. If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join. The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large. Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join. This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does. The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables. Smaller hash tables generally perform better.
The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size. We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.
For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node. We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be. Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.
For now, the planner will only consider using a result cache for
parameterized nested loop joins. This works for both normal joins and
also for LATERAL type joins to subqueries. It is possible to use this new
node for other uses in the future. For example, to cache results from
correlated subqueries. However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio. Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.
The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations. With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be. In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%. Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join. However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values. If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join. Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature. Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.
For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache. However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default. There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression. Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default. It remains to be seen if we'll
maintain that setting for the release.
Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch. Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people. If there's some consensus on a better name, then we can
change it before the release. Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.
Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
This allows something like
SELECT ... FROM t1 JOIN t2 USING (a, b, c) AS x
where x has the columns a, b, c and unlike a regular alias it does not
hide the range variables of the tables being joined t1 and t2.
Per SQL:2016 feature F404 "Range variable for common column names".
Reviewed-by: Vik Fearing <vik.fearing@2ndquadrant.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/flat/454638cf-d563-ab76-a585-2564428062af@2ndquadrant.com
This implements asynchronous execution, which runs multiple parts of a
non-parallel-aware Append concurrently rather than serially to improve
performance when possible. Currently, the only node type that can be
run concurrently is a ForeignScan that is an immediate child of such an
Append. In the case where such ForeignScans access data on different
remote servers, this would run those ForeignScans concurrently, and
overlap the remote operations to be performed simultaneously, so it'll
improve the performance especially when the operations involve
time-consuming ones such as remote join and remote aggregation.
We may extend this to other node types such as joins or aggregates over
ForeignScans in the future.
This also adds the support for postgres_fdw, which is enabled by the
table-level/server-level option "async_capable". The default is false.
Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit
is mostly based on the patch proposed by Robert Haas, but also uses
stuff from the patch proposed by Kyotaro Horiguchi and from the patch
proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin
Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and
others.
Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com
Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com
Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
Here we aim to reduce duplicate work done by contain_volatile_functions()
by caching whether PathTargets and RestrictInfos contain any volatile
functions the first time contain_volatile_functions() is called for them.
Any future calls for these nodes just use the cached value rather than
going to the trouble of recursively checking the sub-node all over again.
Thanks to Tom Lane for the idea.
Any locations in the code which make changes to a PathTarget or
RestrictInfo which could change the outcome of the volatility check must
change the cached value back to VOLATILITY_UNKNOWN again.
contain_volatile_functions() is the only code in charge of setting the
cache value to either VOLATILITY_VOLATILE or VOLATILITY_NOVOLATILE.
Some existing code does benefit from this additional caching, however,
this change is mainly aimed at an upcoming patch that must check for
volatility during the join search. Repeated volatility checks in that
case can become very expensive when the join search contains more than a
few relations.
Author: David Rowley
Discussion: https://postgr.es/m/3795226.1614059027@sss.pgh.pa.us
Allow defining extended statistics on expressions, not just just on
simple column references. With this commit, expressions are supported
by all existing extended statistics kinds, improving the same types of
estimates. A simple example may look like this:
CREATE TABLE t (a int);
CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t;
ANALYZE t;
The collected statistics are useful e.g. to estimate queries with those
expressions in WHERE or GROUP BY clauses:
SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0;
SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20);
This introduces new internal statistics kind 'e' (expressions) which is
built automatically when the statistics object definition includes any
expressions. This represents single-expression statistics, as if there
was an expression index (but without the index maintenance overhead).
The statistics is stored in pg_statistics_ext_data as an array of
composite types, which is possible thanks to 79f6a942bd.
CREATE STATISTICS allows building statistics on a single expression, in
which case in which case it's not possible to specify statistics kinds.
A new system view pg_stats_ext_exprs can be used to display expression
statistics, similarly to pg_stats and pg_stats_ext views.
ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it
treats indexes, i.e. it drops and recreates the statistics. This means
all statistics are reset, and we no longer try to preserve at least the
functional dependencies. This should not be a major issue in practice,
as the functional dependencies actually rely on per-column statistics,
which were always reset anyway.
Author: Tomas Vondra
Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu
Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
To allow inserts in parallel-mode this feature has to ensure that all the
constraints, triggers, etc. are parallel-safe for the partition hierarchy
which is costly and we need to find a better way to do that. Additionally,
we could have used existing cached information in some cases like indexes,
domains, etc. to determine the parallel-safety.
List of commits reverted, in reverse chronological order:
ed62d3737c Doc: Update description for parallel insert reloption.
c8f78b6161 Add a new GUC and a reloption to enable inserts in parallel-mode.
c5be48f092 Improve FK trigger parallel-safety check added by 05c8482f7f.
e2cda3c20a Fix use of relcache TriggerDesc field introduced by commit 05c8482f7f.
e4e87a32cc Fix valgrind issue in commit 05c8482f7f.
05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Discussion: https://postgr.es/m/E1lMiB9-0001c3-SY@gemulon.postgresql.org
There is now a per-column COMPRESSION option which can be set to pglz
(the default, and the only option in up until now) or lz4. Or, if you
like, you can set the new default_toast_compression GUC to lz4, and
then that will be the default for new table columns for which no value
is specified. We don't have lz4 support in the PostgreSQL code, so
to use lz4 compression, PostgreSQL must be built --with-lz4.
In general, TOAST compression means compression of individual column
values, not the whole tuple, and those values can either be compressed
inline within the tuple or compressed and then stored externally in
the TOAST table, so those properties also apply to this feature.
Prior to this commit, a TOAST pointer has two unused bits as part of
the va_extsize field, and a compessed datum has two unused bits as
part of the va_rawsize field. These bits are unused because the length
of a varlena is limited to 1GB; we now use them to indicate the
compression type that was used. This means we only have bit space for
2 more built-in compresison types, but we could work around that
problem, if necessary, by introducing a new vartag_external value for
any further types we end up wanting to add. Hopefully, it won't be
too important to offer a wide selection of algorithms here, since
each one we add not only takes more coding but also adds a build
dependency for every packager. Nevertheless, it seems worth doing
at least this much, because LZ4 gets better compression than PGLZ
with less CPU usage.
It's possible for LZ4-compressed datums to leak into composite type
values stored on disk, just as it is for PGLZ. It's also possible for
LZ4-compressed attributes to be copied into a different table via SQL
commands such as CREATE TABLE AS or INSERT .. SELECT. It would be
expensive to force such values to be decompressed, so PostgreSQL has
never done so. For the same reasons, we also don't force recompression
of already-compressed values even if the target table prefers a
different compression method than was used for the source data. These
architectural decisions are perhaps arguable but revisiting them is
well beyond the scope of what seemed possible to do as part of this
project. However, it's relatively cheap to recompress as part of
VACUUM FULL or CLUSTER, so this commit adjusts those commands to do
so, if the configured compression method of the table happens not to
match what was used for some column value stored therein.
Dilip Kumar. The original patches on which this work was based were
written by Ildus Kurbangaliev, and those were patches were based on
even earlier work by Nikita Glukhov, but the design has since changed
very substantially, since allow a potentially large number of
compression methods that could be added and dropped on a running
system proved too problematic given some of the architectural issues
mentioned above; the choice of which specific compression method to
add first is now different; and a lot of the code has been heavily
refactored. More recently, Justin Przyby helped quite a bit with
testing and reviewing and this version also includes some code
contributions from him. Other design input and review from Tomas
Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander
Korotkov, and me.
Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain
Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
With grouping sets, it's possible that some of the grouping sets are
duplicate. This is especially common with CUBE and ROLLUP clauses. For
example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to
GROUP BY GROUPING SETS (
(a, b, c),
(a, b, c),
(a, b, c),
(a, b),
(a, b),
(a, b),
(a),
(a),
(a),
(c, a),
(c, a),
(c, a),
(c),
(b, c),
(b),
()
)
Some of the grouping sets are calculated multiple times, which is mostly
unnecessary. This commit implements a new GROUP BY DISTINCT feature, as
defined in the SQL standard, which eliminates the duplicate sets.
Author: Vik Fearing
Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra
Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
Parallel SELECT can't be utilized for INSERT in the following cases:
- INSERT statement uses the ON CONFLICT DO UPDATE clause
- Target table has a parallel-unsafe: trigger, index expression or
predicate, column default expression or check constraint
- Target table has a parallel-unsafe domain constraint on any column
- Target table is a partitioned table with a parallel-unsafe partition key
expression or support function
The planner is updated to perform additional parallel-safety checks for
the cases listed above, for determining whether it is safe to run INSERT
in parallel-mode with an underlying parallel SELECT. The planner will
consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided
nothing unsafe is found from the additional parallel-safety checks, or
from the existing parallel-safety checks for SELECT.
While checking parallel-safety, we need to check it for all the partitions
on the table which can be costly especially when we decide not to use a
parallel plan. So, in a separate patch, we will introduce a GUC and or a
reloption to enable/disable parallelism for Insert statements.
Prior to entering parallel-mode for the execution of INSERT with parallel
SELECT, a TransactionId is acquired and assigned to the current
transaction state. This is necessary to prevent the INSERT from attempting
to assign the TransactionId whilst in parallel-mode, which is not allowed.
This approach has a disadvantage in that if the underlying SELECT does not
return any rows, then the TransactionId is not used, however that
shouldn't happen in practice in many cases.
Author: Greg Nancarrow, Amit Langote, Amit Kapila
Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila
Tested-by: Tang, Haiying
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
This adds a new executor node named TID Range Scan. The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column. These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.
To support this, two new optional callback functions have been added to
table AM. scan_set_tidrange is used to set the scan range to just the
given range of TIDs. scan_getnextslot_tidrange fetches the next tuple
in the given range.
For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine. The query planner won't
generate TID Range Scan Paths in that case.
Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a8 to trigger. Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.
The preceding two commits did away with all use of the partitioned_rels
values; this commit just mechanically removes the fields and the code
that calculated them.
Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
This adds the SQL standard feature that adds the SEARCH and CYCLE
clauses to recursive queries to be able to do produce breadth- or
depth-first search orders and detect cycles. These clauses can be
rewritten into queries using existing syntax, and that is what this
patch does in the rewriter.
Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
Invent new RawParseModes that allow the core grammar to handle
pl/pgsql expressions and assignments directly, and thereby get rid
of a lot of hackery in pl/pgsql's parser. This moves a good deal
of knowledge about pl/pgsql into the core code: notably, we have to
invent a CoercionContext that matches pl/pgsql's (rather dubious)
historical behavior for assignment coercions. That's getting away
from the original idea of pl/pgsql as an arm's-length extension of
the core, but really we crossed that bridge a long time ago.
The main advantage of doing this is that we can now use the core
parser to generate FieldStore and/or SubscriptingRef nodes to handle
assignments to pl/pgsql variables that are records or arrays. That
fixes a number of cases that had never been implemented in pl/pgsql
assignment, such as nested records and array slicing, and it allows
pl/pgsql assignment to support the datatype-specific subscripting
behaviors introduced in commit c7aba7c14.
There are cosmetic benefits too: when a syntax error occurs in a
pl/pgsql expression, the error report no longer includes the confusing
"SELECT" keyword that used to get prefixed to the expression text.
Also, there seem to be some small speed gains.
Discussion: https://postgr.es/m/4165684.1607707277@sss.pgh.pa.us
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means. Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers. (This patch provides no such new
features, though; it only lays the foundation for them.)
To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler. On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines. (Thus, essentially
no new run-time overhead should be caused by this patch. Indeed,
there is room to remove some overhead by supplying specialized
execution routines. This patch does a little bit in that line,
but more could be done.)
Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.
One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER. For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.
This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.
Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule
Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
This GUC was always intended as a temporary solution to help with
finding 9.4-to-9.5 migration issues. Now that all pre-9.5 branches
are out of support, and 9.5 will be too before v14 is released,
it seems like it's okay to drop it. Doing so allows removal of
several hundred lines of poorly-tested code in parse_expr.c,
which have been a fertile source of bugs when people did use this.
Discussion: https://postgr.es/m/2234320.1607117945@sss.pgh.pa.us