mirror of
https://github.com/postgres/postgres.git
synced 2025-04-22 23:02:54 +03:00
Import changes from IMath versions (1.3, 1.29].
Upstream fixed bugs over the years, but none are confirmed to have affected pgcrypto. We're better off naively tracking upstream than reactively maintaining a twelve-year-old snapshot of upstream. Add a header comment describing the synchronization procedure. Discard use of INVERT_COMPARE_RESULT(); the domain of the comparisons in question is {-1,0,1}, controlled entirely by code in imath.c. Andrew Gierth reviewed the Makefile change. Tom Lane reviewed the synchronization procedure description. Discussion: https://postgr.es/m/20190203035704.GA6226@rfd.leadboat.com
This commit is contained in:
parent
d1299aabbd
commit
48e24ba6b7
@ -59,6 +59,9 @@ SHLIB_LINK += $(filter -leay32, $(LIBS))
|
||||
SHLIB_LINK += -lws2_32
|
||||
endif
|
||||
|
||||
# Upstream uses a larger subset of C99.
|
||||
imath.o: CFLAGS+=$(PERMIT_DECLARATION_AFTER_STATEMENT)
|
||||
|
||||
rijndael.o: rijndael.tbl
|
||||
|
||||
rijndael.tbl:
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,61 +1,57 @@
|
||||
/*
|
||||
Name: imath.h
|
||||
Purpose: Arbitrary precision integer arithmetic routines.
|
||||
Author: M. J. Fromberger <http://spinning-yarns.org/michael/sw/>
|
||||
Info: Id: imath.h 21 2006-04-02 18:58:36Z sting
|
||||
Name: imath.h
|
||||
Purpose: Arbitrary precision integer arithmetic routines.
|
||||
Author: M. J. Fromberger
|
||||
|
||||
Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
|
||||
Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person
|
||||
obtaining a copy of this software and associated documentation files
|
||||
(the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of the Software,
|
||||
and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be
|
||||
included in all copies or substantial portions of the Software.
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
*/
|
||||
/* contrib/pgcrypto/imath.h */
|
||||
|
||||
#ifndef IMATH_H_
|
||||
#define IMATH_H_
|
||||
|
||||
/* use always 32bit digits - should some arch use 16bit digits? */
|
||||
#define USE_LONG_LONG
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
typedef unsigned char mp_sign;
|
||||
typedef unsigned int mp_size;
|
||||
typedef int mp_result;
|
||||
typedef long mp_small; /* must be a signed type */
|
||||
typedef unsigned long mp_usmall; /* must be an unsigned type */
|
||||
|
||||
#ifdef USE_LONG_LONG
|
||||
typedef uint32 mp_digit;
|
||||
typedef uint64 mp_word;
|
||||
|
||||
#define MP_DIGIT_MAX 0xFFFFFFFFULL
|
||||
#define MP_WORD_MAX 0xFFFFFFFFFFFFFFFFULL
|
||||
/* Build with words as uint64_t by default. */
|
||||
#ifdef USE_32BIT_WORDS
|
||||
typedef uint16_t mp_digit;
|
||||
typedef uint32_t mp_word;
|
||||
#define MP_DIGIT_MAX (UINT16_MAX * 1UL)
|
||||
#define MP_WORD_MAX (UINT32_MAX * 1UL)
|
||||
#else
|
||||
typedef uint16 mp_digit;
|
||||
typedef uint32 mp_word;
|
||||
|
||||
#define MP_DIGIT_MAX 0xFFFFUL
|
||||
#define MP_WORD_MAX 0xFFFFFFFFUL
|
||||
typedef uint32_t mp_digit;
|
||||
typedef uint64_t mp_word;
|
||||
#define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1))
|
||||
#define MP_WORD_MAX (UINT64_MAX)
|
||||
#endif
|
||||
|
||||
typedef struct mpz
|
||||
typedef struct
|
||||
{
|
||||
mp_digit single;
|
||||
mp_digit *digits;
|
||||
mp_size alloc;
|
||||
mp_size used;
|
||||
@ -64,10 +60,26 @@ typedef struct mpz
|
||||
|
||||
*mp_int;
|
||||
|
||||
#define MP_DIGITS(Z) ((Z)->digits)
|
||||
#define MP_ALLOC(Z) ((Z)->alloc)
|
||||
#define MP_USED(Z) ((Z)->used)
|
||||
#define MP_SIGN(Z) ((Z)->sign)
|
||||
static inline mp_digit *
|
||||
MP_DIGITS(mp_int Z)
|
||||
{
|
||||
return Z->digits;
|
||||
}
|
||||
static inline mp_size
|
||||
MP_ALLOC(mp_int Z)
|
||||
{
|
||||
return Z->alloc;
|
||||
}
|
||||
static inline mp_size
|
||||
MP_USED(mp_int Z)
|
||||
{
|
||||
return Z->used;
|
||||
}
|
||||
static inline mp_sign
|
||||
MP_SIGN(mp_int Z)
|
||||
{
|
||||
return Z->sign;
|
||||
}
|
||||
|
||||
extern const mp_result MP_OK;
|
||||
extern const mp_result MP_FALSE;
|
||||
@ -77,134 +89,357 @@ extern const mp_result MP_RANGE;
|
||||
extern const mp_result MP_UNDEF;
|
||||
extern const mp_result MP_TRUNC;
|
||||
extern const mp_result MP_BADARG;
|
||||
extern const mp_result MP_MINERR;
|
||||
|
||||
#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
|
||||
#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
|
||||
#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
|
||||
#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
|
||||
#define MP_SMALL_MIN LONG_MIN
|
||||
#define MP_SMALL_MAX LONG_MAX
|
||||
#define MP_USMALL_MAX ULONG_MAX
|
||||
|
||||
#define MP_MIN_RADIX 2
|
||||
#define MP_MAX_RADIX 36
|
||||
#define MP_MIN_RADIX 2
|
||||
#define MP_MAX_RADIX 36
|
||||
|
||||
/** Sets the default number of digits allocated to an `mp_int` constructed by
|
||||
`mp_int_init_size()` with `prec == 0`. Allocations are rounded up to
|
||||
multiples of this value. `MP_DEFAULT_PREC` is the default value. Requires
|
||||
`ndigits > 0`. */
|
||||
void mp_int_default_precision(mp_size ndigits);
|
||||
|
||||
/** Sets the number of digits below which multiplication will use the standard
|
||||
quadratic "schoolbook" multiplcation algorithm rather than Karatsuba-Ofman.
|
||||
Requires `ndigits >= sizeof(mp_word)`. */
|
||||
void mp_int_multiply_threshold(mp_size ndigits);
|
||||
|
||||
/** A sign indicating a (strictly) negative value. */
|
||||
extern const mp_sign MP_NEG;
|
||||
|
||||
/** A sign indicating a zero or positive value. */
|
||||
extern const mp_sign MP_ZPOS;
|
||||
|
||||
#define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
|
||||
#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
|
||||
/** Reports whether `z` is odd, having remainder 1 when divided by 2. */
|
||||
static inline bool
|
||||
mp_int_is_odd(mp_int z)
|
||||
{
|
||||
return (z->digits[0] & 1) != 0;
|
||||
}
|
||||
|
||||
mp_size mp_get_default_precision(void);
|
||||
void mp_set_default_precision(mp_size s);
|
||||
mp_size mp_get_multiply_threshold(void);
|
||||
void mp_set_multiply_threshold(mp_size s);
|
||||
/** Reports whether `z` is even, having remainder 0 when divided by 2. */
|
||||
static inline bool
|
||||
mp_int_is_even(mp_int z)
|
||||
{
|
||||
return (z->digits[0] & 1) == 0;
|
||||
}
|
||||
|
||||
/** Initializes `z` with 1-digit precision and sets it to zero. This function
|
||||
cannot fail unless `z == NULL`. */
|
||||
mp_result mp_int_init(mp_int z);
|
||||
|
||||
/** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case
|
||||
of error. The only possible error is out-of-memory. */
|
||||
mp_int mp_int_alloc(void);
|
||||
|
||||
/** Initializes `z` with at least `prec` digits of storage, and sets it to
|
||||
zero. If `prec` is zero, the default precision is used. In either case the
|
||||
size is rounded up to the nearest multiple of the word size. */
|
||||
mp_result mp_int_init_size(mp_int z, mp_size prec);
|
||||
|
||||
/** Initializes `z` to be a copy of an already-initialized value in `old`. The
|
||||
new copy does not share storage with the original. */
|
||||
mp_result mp_int_init_copy(mp_int z, mp_int old);
|
||||
mp_result mp_int_init_value(mp_int z, int value);
|
||||
mp_result mp_int_set_value(mp_int z, int value);
|
||||
|
||||
/** Initializes `z` to the specified signed `value` at default precision. */
|
||||
mp_result mp_int_init_value(mp_int z, mp_small value);
|
||||
|
||||
/** Initializes `z` to the specified unsigned `value` at default precision. */
|
||||
mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue);
|
||||
|
||||
/** Sets `z` to the value of the specified signed `value`. */
|
||||
mp_result mp_int_set_value(mp_int z, mp_small value);
|
||||
|
||||
/** Sets `z` to the value of the specified unsigned `value`. */
|
||||
mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue);
|
||||
|
||||
/** Releases the storage used by `z`. */
|
||||
void mp_int_clear(mp_int z);
|
||||
|
||||
/** Releases the storage used by `z` and also `z` itself.
|
||||
This should only be used for `z` allocated by `mp_int_alloc()`. */
|
||||
void mp_int_free(mp_int z);
|
||||
|
||||
mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */
|
||||
void mp_int_swap(mp_int a, mp_int c); /* swap a, c */
|
||||
void mp_int_zero(mp_int z); /* z = 0 */
|
||||
mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */
|
||||
mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */
|
||||
mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */
|
||||
mp_result mp_int_add_value(mp_int a, int value, mp_int c);
|
||||
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */
|
||||
mp_result mp_int_sub_value(mp_int a, int value, mp_int c);
|
||||
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */
|
||||
mp_result mp_int_mul_value(mp_int a, int value, mp_int c);
|
||||
mp_result mp_int_mul_pow2(mp_int a, int p2, mp_int c);
|
||||
mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */
|
||||
/** Replaces the value of `c` with a copy of the value of `a`. No new memory is
|
||||
allocated unless `a` has more significant digits than `c` has allocated. */
|
||||
mp_result mp_int_copy(mp_int a, mp_int c);
|
||||
|
||||
mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */
|
||||
mp_int q, mp_int r); /* r = a % b */
|
||||
mp_result mp_int_div_value(mp_int a, int value, /* q = a / value */
|
||||
mp_int q, int *r); /* r = a % value */
|
||||
mp_result mp_int_div_pow2(mp_int a, int p2, /* q = a / 2^p2 */
|
||||
mp_int q, mp_int r); /* r = q % 2^p2 */
|
||||
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */
|
||||
/** Swaps the values and storage between `a` and `c`. */
|
||||
void mp_int_swap(mp_int a, mp_int c);
|
||||
|
||||
#define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
|
||||
mp_result mp_int_expt(mp_int a, int b, mp_int c); /* c = a^b */
|
||||
mp_result mp_int_expt_value(int a, int b, mp_int c); /* c = a^b */
|
||||
/** Sets `z` to zero. The allocated storage of `z` is not changed. */
|
||||
void mp_int_zero(mp_int z);
|
||||
|
||||
int mp_int_compare(mp_int a, mp_int b); /* a <=> b */
|
||||
int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */
|
||||
int mp_int_compare_zero(mp_int z); /* a <=> 0 */
|
||||
int mp_int_compare_value(mp_int z, int value); /* a <=> v */
|
||||
/** Sets `c` to the absolute value of `a`. */
|
||||
mp_result mp_int_abs(mp_int a, mp_int c);
|
||||
|
||||
/* Returns true if v|a, false otherwise (including errors) */
|
||||
int mp_int_divisible_value(mp_int a, int v);
|
||||
/** Sets `c` to the additive inverse (negation) of `a`. */
|
||||
mp_result mp_int_neg(mp_int a, mp_int c);
|
||||
|
||||
/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
|
||||
/** Sets `c` to the sum of `a` and `b`. */
|
||||
mp_result mp_int_add(mp_int a, mp_int b, mp_int c);
|
||||
|
||||
/** Sets `c` to the sum of `a` and `value`. */
|
||||
mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
|
||||
|
||||
/** Sets `c` to the difference of `a` less `b`. */
|
||||
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c);
|
||||
|
||||
/** Sets `c` to the difference of `a` less `value`. */
|
||||
mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
|
||||
|
||||
/** Sets `c` to the product of `a` and `b`. */
|
||||
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c);
|
||||
|
||||
/** Sets `c` to the product of `a` and `value`. */
|
||||
mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
|
||||
|
||||
/** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */
|
||||
mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
|
||||
|
||||
/** Sets `c` to the square of `a`. */
|
||||
mp_result mp_int_sqr(mp_int a, mp_int c);
|
||||
|
||||
/** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by
|
||||
powers of 2 is detected and handled efficiently. The remainder is pinned
|
||||
to `0 <= r < b`.
|
||||
|
||||
Either of `q` or `r` may be NULL, but not both, and `q` and `r` may not
|
||||
point to the same value. */
|
||||
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r);
|
||||
|
||||
/** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by
|
||||
powers of 2 is detected and handled efficiently. The remainder is pinned to
|
||||
`0 <= *r < b`. Either of `q` or `r` may be NULL. */
|
||||
mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small * r);
|
||||
|
||||
/** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a
|
||||
special case for division by powers of two that is more efficient than
|
||||
using ordinary division. Note that `mp_int_div()` will automatically handle
|
||||
this case, this function is for cases where you have only the exponent. */
|
||||
mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r);
|
||||
|
||||
/** Sets `c` to the remainder of `a / m`.
|
||||
The remainder is pinned to `0 <= c < m`. */
|
||||
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c);
|
||||
|
||||
/** Sets `c` to the value of `a` raised to the `b` power.
|
||||
It returns `MP_RANGE` if `b < 0`. */
|
||||
mp_result mp_int_expt(mp_int a, mp_small b, mp_int c);
|
||||
|
||||
/** Sets `c` to the value of `a` raised to the `b` power.
|
||||
It returns `MP_RANGE` if `b < 0`. */
|
||||
mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c);
|
||||
|
||||
/** Sets `c` to the value of `a` raised to the `b` power.
|
||||
It returns `MP_RANGE`) if `b < 0`. */
|
||||
mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c);
|
||||
|
||||
/** Sets `*r` to the remainder of `a / value`.
|
||||
The remainder is pinned to `0 <= r < value`. */
|
||||
static inline
|
||||
mp_result
|
||||
mp_int_mod_value(mp_int a, mp_small value, mp_small * r)
|
||||
{
|
||||
return mp_int_div_value(a, value, 0, r);
|
||||
}
|
||||
|
||||
/** Returns the comparator of `a` and `b`. */
|
||||
int mp_int_compare(mp_int a, mp_int b);
|
||||
|
||||
/** Returns the comparator of the magnitudes of `a` and `b`, disregarding their
|
||||
signs. Neither `a` nor `b` is modified by the comparison. */
|
||||
int mp_int_compare_unsigned(mp_int a, mp_int b);
|
||||
|
||||
/** Returns the comparator of `z` and zero. */
|
||||
int mp_int_compare_zero(mp_int z);
|
||||
|
||||
/** Returns the comparator of `z` and the signed value `v`. */
|
||||
int mp_int_compare_value(mp_int z, mp_small v);
|
||||
|
||||
/** Returns the comparator of `z` and the unsigned value `uv`. */
|
||||
int mp_int_compare_uvalue(mp_int z, mp_usmall uv);
|
||||
|
||||
/** Reports whether `a` is divisible by `v`. */
|
||||
bool mp_int_divisible_value(mp_int a, mp_small v);
|
||||
|
||||
/** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such
|
||||
`k` exists, the function returns -1. */
|
||||
int mp_int_is_pow2(mp_int z);
|
||||
|
||||
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
|
||||
mp_int c); /* c = a^b (mod m) */
|
||||
mp_result mp_int_exptmod_evalue(mp_int a, int value,
|
||||
mp_int m, mp_int c); /* c = a^v (mod m) */
|
||||
mp_result mp_int_exptmod_bvalue(int value, mp_int b,
|
||||
mp_int m, mp_int c); /* c = v^b (mod m) */
|
||||
mp_result mp_int_exptmod_known(mp_int a, mp_int b,
|
||||
mp_int m, mp_int mu,
|
||||
mp_int c); /* c = a^b (mod m) */
|
||||
/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`.
|
||||
It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
|
||||
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c);
|
||||
|
||||
/** Sets `c` to the value of `a` raised to the `value` power, modulo `m`.
|
||||
It returns `MP_RANGE` if `value < 0` or `MP_UNDEF` if `m == 0`. */
|
||||
mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c);
|
||||
|
||||
/** Sets `c` to the value of `value` raised to the `b` power, modulo `m`.
|
||||
It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
|
||||
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c);
|
||||
|
||||
/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`,
|
||||
given a precomputed reduction constant `mu` defined for Barrett's modular
|
||||
reduction algorithm.
|
||||
|
||||
It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
|
||||
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
|
||||
|
||||
/** Sets `c` to the reduction constant for Barrett reduction by modulus `m`.
|
||||
Requires that `c` and `m` point to distinct locations. */
|
||||
mp_result mp_int_redux_const(mp_int m, mp_int c);
|
||||
|
||||
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
|
||||
/** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists.
|
||||
The least non-negative representative of the congruence class is computed.
|
||||
|
||||
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */
|
||||
It returns `MP_UNDEF` if the inverse does not exist, or `MP_RANGE` if `a ==
|
||||
0` or `m <= 0`. */
|
||||
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c);
|
||||
|
||||
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */
|
||||
mp_int x, mp_int y); /* c = ax + by */
|
||||
/** Sets `c` to the greatest common divisor of `a` and `b`.
|
||||
|
||||
mp_result mp_int_sqrt(mp_int a, mp_int c); /* c = floor(sqrt(q)) */
|
||||
It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
|
||||
and `b` are both zero. */
|
||||
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c);
|
||||
|
||||
/* Convert to an int, if representable (returns MP_RANGE if not). */
|
||||
mp_result mp_int_to_int(mp_int z, int *out);
|
||||
/** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and
|
||||
`y` to values satisfying Bezout's identity `gcd(a, b) = ax + by`.
|
||||
|
||||
/* Convert to nul-terminated string with the specified radix, writing at
|
||||
most limit characters including the nul terminator */
|
||||
mp_result mp_int_to_string(mp_int z, mp_size radix,
|
||||
char *str, int limit);
|
||||
It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
|
||||
and `b` are both zero. */
|
||||
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y);
|
||||
|
||||
/* Return the number of characters required to represent
|
||||
z in the given radix. May over-estimate. */
|
||||
/** Sets `c` to the least common multiple of `a` and `b`.
|
||||
|
||||
It returns `MP_UNDEF` if the LCM is undefined, such as for example if `a`
|
||||
and `b` are both zero. */
|
||||
mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c);
|
||||
|
||||
/** Sets `c` to the greatest integer not less than the `b`th root of `a`,
|
||||
using Newton's root-finding algorithm.
|
||||
It returns `MP_UNDEF` if `a < 0` and `b` is even. */
|
||||
mp_result mp_int_root(mp_int a, mp_small b, mp_int c);
|
||||
|
||||
/** Sets `c` to the greatest integer not less than the square root of `a`.
|
||||
This is a special case of `mp_int_root()`. */
|
||||
static inline
|
||||
mp_result
|
||||
mp_int_sqrt(mp_int a, mp_int c)
|
||||
{
|
||||
return mp_int_root(a, 2, c);
|
||||
}
|
||||
|
||||
/** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`.
|
||||
If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
|
||||
mp_result mp_int_to_int(mp_int z, mp_small * out);
|
||||
|
||||
/** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`.
|
||||
If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
|
||||
mp_result mp_int_to_uint(mp_int z, mp_usmall * out);
|
||||
|
||||
/** Converts `z` to a zero-terminated string of characters in the specified
|
||||
`radix`, writing at most `limit` characters to `str` including the
|
||||
terminating NUL value. A leading `-` is used to indicate a negative value.
|
||||
|
||||
Returns `MP_TRUNC` if `limit` was to small to write all of `z`.
|
||||
Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
|
||||
mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit);
|
||||
|
||||
/** Reports the minimum number of characters required to represent `z` as a
|
||||
zero-terminated string in the given `radix`.
|
||||
Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
|
||||
mp_result mp_int_string_len(mp_int z, mp_size radix);
|
||||
|
||||
/* Read zero-terminated string into z */
|
||||
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
|
||||
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
|
||||
char **end);
|
||||
/** Reads a string of ASCII digits in the specified `radix` from the zero
|
||||
terminated `str` provided into `z`. For values of `radix > 10`, the letters
|
||||
`A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
|
||||
to case.
|
||||
|
||||
/* Return the number of significant bits in z */
|
||||
Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
|
||||
sign flag. Processing stops when a NUL or any other character out of range
|
||||
for a digit in the given radix is encountered.
|
||||
|
||||
If the whole string was consumed, `MP_OK` is returned; otherwise
|
||||
`MP_TRUNC`. is returned.
|
||||
|
||||
Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
|
||||
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
|
||||
|
||||
/** Reads a string of ASCII digits in the specified `radix` from the zero
|
||||
terminated `str` provided into `z`. For values of `radix > 10`, the letters
|
||||
`A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
|
||||
to case.
|
||||
|
||||
Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
|
||||
sign flag. Processing stops when a NUL or any other character out of range
|
||||
for a digit in the given radix is encountered.
|
||||
|
||||
If the whole string was consumed, `MP_OK` is returned; otherwise
|
||||
`MP_TRUNC`. is returned. If `end` is not NULL, `*end` is set to point to
|
||||
the first unconsumed byte of the input string (the NUL byte if the whole
|
||||
string was consumed). This emulates the behavior of the standard C
|
||||
`strtol()` function.
|
||||
|
||||
Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
|
||||
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end);
|
||||
|
||||
/** Returns the number of significant bits in `z`. */
|
||||
mp_result mp_int_count_bits(mp_int z);
|
||||
|
||||
/* Convert z to two's complement binary, writing at most limit bytes */
|
||||
/** Converts `z` to 2's complement binary, writing at most `limit` bytes into
|
||||
the given `buf`. Returns `MP_TRUNC` if the buffer limit was too small to
|
||||
contain the whole value. If this occurs, the contents of buf will be
|
||||
effectively garbage, as the function uses the buffer as scratch space.
|
||||
|
||||
The binary representation of `z` is in base-256 with digits ordered from
|
||||
most significant to least significant (network byte ordering). The
|
||||
high-order bit of the first byte is set for negative values, clear for
|
||||
non-negative values.
|
||||
|
||||
As a result, non-negative values will be padded with a leading zero byte if
|
||||
the high-order byte of the base-256 magnitude is set. This extra byte is
|
||||
accounted for by the `mp_int_binary_len()` function. */
|
||||
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
|
||||
|
||||
/* Read a two's complement binary value into z from the given buffer */
|
||||
/** Reads a 2's complement binary value from `buf` into `z`, where `len` is the
|
||||
length of the buffer. The contents of `buf` may be overwritten during
|
||||
processing, although they will be restored when the function returns. */
|
||||
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
|
||||
|
||||
/* Return the number of bytes required to represent z in binary. */
|
||||
/** Returns the number of bytes to represent `z` in 2's complement binary. */
|
||||
mp_result mp_int_binary_len(mp_int z);
|
||||
|
||||
/* Convert z to unsigned binary, writing at most limit bytes */
|
||||
/** Converts the magnitude of `z` to unsigned binary, writing at most `limit`
|
||||
bytes into the given `buf`. The sign of `z` is ignored, but `z` is not
|
||||
modified. Returns `MP_TRUNC` if the buffer limit was too small to contain
|
||||
the whole value. If this occurs, the contents of `buf` will be effectively
|
||||
garbage, as the function uses the buffer as scratch space during
|
||||
conversion.
|
||||
|
||||
The binary representation of `z` is in base-256 with digits ordered from
|
||||
most significant to least significant (network byte ordering). */
|
||||
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
|
||||
|
||||
/* Read an unsigned binary value into z from the given buffer */
|
||||
/** Reads an unsigned binary value from `buf` into `z`, where `len` is the
|
||||
length of the buffer. The contents of `buf` are not modified during
|
||||
processing. */
|
||||
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
|
||||
|
||||
/* Return the number of bytes required to represent z as unsigned output */
|
||||
/** Returns the number of bytes required to represent `z` as an unsigned binary
|
||||
value in base 256. */
|
||||
mp_result mp_int_unsigned_len(mp_int z);
|
||||
|
||||
/* Return a statically allocated string describing error code res */
|
||||
/** Returns a pointer to a brief, human-readable, zero-terminated string
|
||||
describing `res`. The returned string is statically allocated and must not
|
||||
be freed by the caller. */
|
||||
const char *mp_error_string(mp_result res);
|
||||
|
||||
#if 0
|
||||
void s_print(char *tag, mp_int z);
|
||||
void s_print_buf(char *tag, mp_digit *buf, mp_size num);
|
||||
#endif
|
||||
|
||||
#endif /* end IMATH_H_ */
|
||||
|
Loading…
x
Reference in New Issue
Block a user