The parser works as follows:
The rule expr_lex returns a pointer to a newly created sp_expr_lex
instance which is not linked to any MariaDB structures yet - it is
pointed only from a Bison stack variable. The sp_expr_lex instance
gets linked to other structures (such as sp_instr_jump_if_not) later,
after scanning some following grammar.
Problem before the fix:
If a parse error happened immediately after expr_lex (before it got linked),
the created sp_expr_lex value got lost causing a memory leak.
Fix:
- Using Bison's "destructor" directive to free the results of expr_lex
on parse/oom errors.
- Moving the call for LEX::cleanup_lex_after_parse_error() from
MYSQL_YYABORT and yyerror inside parse_sql().
This is needed because Bison calls destructors after yyerror(),
while it's important to delete the sp_expr_lex instance before
LEX::cleanup_lex_after_parse_error().
The latter frees the memory root containing the sp_expr_lex instance.
After this change the code block are executed in the following order:
- yyerror() -- now only raises the error to DA (no cleanup done any more)
- %destructor { delete $$; } <expr_lex> -- destructs the sp_expr_lex instance
- LEX::cleanup_lex_after_parse_error() -- frees the memory root containing
the sp_expr_lex instance
- Removing the "delete sublex" related code from restore_lex():
- restore_lex() is called in most cases on success, when delete is not needed.
- There is one place when restore_lex() is called on error:
In sp_create_assignment_instr(). But in this case LEX::sp_lex_in_use
is true anyway.
The patch adds a new DBUG_ASSERT(lex->sp_lex_in_use) to guard this.
Allow queries of multiple SELECTs combined together with
UNIONs/EXCEPTs/INTERSECTs to be pushed down to foreign engines.
If the foreign engine provides an interface method "create_unit"
and the UNIT is a top-level unit of the SQL query then the server
tries to push the whole SELECT_LEX_UNIT down to the engine for execution.
The engine should perform necessary checks and if they succeed,
execute the query. If the engine is unable to execute the whole unit,
then another attempt is made to push down SELECTs composing the unit
separately using the "create_select" interface method. In this case
the results of separate SELECTs are combined at the server side
thus composing the final result
This bug could cause a crash of the server when processing a query with
ROWNUM() if it used in its FROM list a reference to a mergeable view
defined as SELECT over more than one table that contained ORDER BY clause.
When a mergeable view with ORDER BY clause and without LIMIT clause is used
in the FROM list of a query that does not have ORDER BY clause the ORDER BY
clause of the view is moved to the query. The code that performed this
transformation forgot to delete the moved ORDER BY list from the view.
If a query contains ROWNUM() and uses a mergeable multi-table view with
ORDER BY then according to the current code of TABLE_LIST::init_derived()
the view has to be forcibly materialized. As the query and the view shared
the same items in its ORDER BY lists they could not be properly resolved
either in the query or in the view. This led to a crash of the server.
This patch has returned back the original signature of LEX::can_not_use_merged()
to comply with 10.4 code of the condition that checks whether a megeable
view has to be forcibly materialized.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
Adding virtual methods to class Schema:
make_item_func_replace()
make_item_func_substr()
make_item_func_trim()
This is a non-functional preparatory change for MDEV-27744.
Now the same rule applied to vews and derived tables. So we should
allow merge of views (and derived) in queries with rownum, because
it do not change results, only makes query plans better.
In MariaDB, we have a confusing problem where:
* The transaction_isolation option can be set in a configuration file, but it cannot be set dynamically.
* The tx_isolation system variable can be set dynamically, but it cannot be set in a configuration file.
Therefore, we have two different names for the same thing in different contexts. This is needlessly confusing, and it complicates the documentation. The same thing applys for transaction_read_only.
MySQL 5.7 solved this problem by making them into system variables. https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-20.html
This commit takes a similar approach by adding new system variables and marking the original ones as deprecated. This commit also resolves some legacy problems related to SET STATEMENT and transaction_isolation.
EXPLAIN EXTENDED for an UPDATE/DELETE/INSERT/REPLACE statement did not
produce the warning containing the text representation of the query
obtained after the optimization phase. Such warning was produced for
SELECT statements, but not for DML statements.
The patch fixes this defect of EXPLAIN EXTENDED for DML statements.
This patch fixes not only the assertion failure in the function
Field_iterator_table_ref::set_field_iterator() but also:
- fixes the problem of forced materialization of derived tables used
in subqueries contained in WHERE clauses of single-table and multi-table
UPDATE and DELETE statements
- fixes the problem of MDEV-17954 that prevented execution of multi-table
DELETE statements if they use in their WHERE clauses references to
the tables that are updated.
The patch must be considered a complement to the patch for MDEV-28883.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This patch introduces a new way of handling UPDATE and DELETE commands at
the top level after the parsing phase. This new way of processing update
and delete statements can be seen in the implementation of the prepare()
and execute() methods from the new Sql_cmd_dml class. This class derived
from the Sql_cmd class can be considered as an interface class for processing
such commands as SELECT, INSERT, UPDATE, DELETE and other comands
manipulating data in tables.
With this patch processing of update and delete statements after parsing
proceeds by the following schema:
- precheck of the access rights is performed for the used tables
- the used tables are opened
- context analysis phase is performed for the statement
- the used tables are locked
- the statement is optimized and executed
- clean-up is performed for the statement
The implementation of the method Sql_cmd_dml::execute() adheres this schema.
The virtual functions of the class Sql_cmd_dml used for precheck of the
access rights, context analysis, optimization and execution allow to adjust
this schema for processing data manipulation statements of any types.
This schema of processing data manipulation statements is taken from the
current MySQL code. Moreover the definition the class Sql_cmd_dml introduced
in this patch is almost a full replica of such class in the existing MySQL.
However the implementation of the derived classes for update and delete
statements is quite different. This implementation employs the JOIN class
for all kinds of update and delete statements. It allows to perform main
bulk of context analysis actions by the function JOIN::prepare(). This
guarantees that characteristics and properties of the statement tree
discovered for optimization phase when doing context analysis are the same
for single-table and multi-table updates and deletes.
With this patch the following functions are gone:
mysql_prepare_update(), mysql_multi_update_prepare(),
mysql_update(), mysql_multi_update(),
mysql_prepare_delete(), mysql_multi_delete_prepare(), mysql_delete().
The code within these functions have been used as much as possible though.
The functions mysql_test_update() and mysql_test_delete() are also not
needed anymore. The method Sql_cmd_dml::prepare() serves processing
- update/delete statement
- PREPARE stmt FROM "<update/delete statement>"
- EXECUTE stmt when stmt is prepared from update/delete statement.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
MDEV-30668 Set function aggregated in outer select used in view definition
This patch fixes two bugs concerning views whose specifications contain
subqueries with set functions aggregated in outer selects.
Due to the first bug those such views that have implicit grouping were
considered as mergeable. This led to wrong result sets for selects from
these views.
Due to the second bug the aggregation select was determined incorrectly and
this led to bogus error messages.
The patch added several test cases for these two bugs and for four other
duplicate bugs.
The patch also enables view-protocol for many other test cases.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
Subselect_single_value_engine cannot handle table value constructor used as
subquery. That's why any table value constructor TVC used as subquery is
converted into a select over derived table whose specification is TVC.
Currently the names of the columns of the derived table DT are taken from
the first element of TVC and if the k-th component of the element happens
to be a subquery the text representation of this subquery serves as the
name of the k-th column of the derived table. References of all columns of
the derived table DT compose the select list of the result of the conversion.
If a definition of a view contained a table value constructor used as a
subquery and the view was registered after this conversion had been
applied we could register an invalid view definition if the first element
of TVC contained a subquery as its component: the name of this component
was taken from the original subquery, while the name of the corresponding
column of the derived table was taken from the text representation of the
subquery produced by the function SELECT_LEX::print() and these names were
usually differ from each other.
To avoid registration of such invalid views the function SELECT_LEX::print()
now prints the original TVC instead of the select in which this TVC has
been wrapped. Now the specification of registered view looks like as if no
conversions from TVC to selects were done.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The idea is that instead of marking all select_lex's with DISTINCT, we
only mark those that really need distinct result.
Benefits of this change:
- Temporary tables used with derived tables, UNION, IN are now smaller
as duplicates are removed already on the insert phase.
- The optimizer can now produce better plans with EQ_REF. This can be
seen from the tests where several queries does not anymore materialize
derived tables twice.
- Queries affected by 'in_predicate_conversion_threshold' where large IN
lists are converted to sub query produces better plans.
Other things:
- Removed on duplicate call to sel->init_select() in
LEX::add_primary_to_query_expression_body()
- I moved the testing of
tab->table->pos_in_table_list->is_materialized_derived()
in join_read_const_table() to the caller as it caused problems for
derived tables that could be proven to be const tables.
This also is likely to fix some bugs as if join_read_const_table()
was aborted, the table was left marked as JT_CONST, which cannot
be good. I added an ASSERT there for now that can be removed when
the code has been properly tested.
- Updated comments
- Added some extra DEBUG
- Indentation changes and break long lines
- Trivial code changes like:
- Combining 2 statements in one
- Reorder DBUG lines
- Use a variable to store a pointer that is used multiple times
- Moved declaration of variables to start of loop/function
- Removed dead or commented code
- Removed wrong DBUG_EXECUTE code in best_extension_by_limited_search()
Use SELECT_LEX to save lists for ORDER BY and GROUP BY before parsing
WINDOW clauses / specifications. This is needed for proper parsing
of a nested WINDOW clause when a WINDOW clause is used in a subquery
contained in another WINDOW clause.
Fix assignment of empty SQL_I_List to another one (in case of empty list
next shoud point on first).
it's incorrect to use change_item_tree() to replace arguments
of top-level AND/OR, because they (arguments) are stored in a List,
so a pointer to an argument is in the list_node, and individual
list_node's of top-level AND/OR can be deleted in Item_cond::build_equal_items().
In that case rollback_item_tree_changes() will modify the deleted object.
Luckily, it's not needed to use change_item_tree() for top-level
AND/OR, because the whole top-level item is copied and preserved
in prep_where and prep_on, and restored from there.
So, just don't.
Additionally to the test case in the commit it fixes
* ASAN failure of main.opt_tvc --ps
* ASAN failure of main.having_cond_pushdown --ps
The cause of regression was handling for ROWNUM() function.
For queries like
SELECT ROWNUM() FROM ... ORDER BY ...
ROWNUM() should be computed before the ORDER BY.
The computation was moved to be before the ORDER BY for any entries in
the select list that had RAND_TABLE_BIT set.
This had a negative impact on queries in form:
SELECT sp_func() FROM t1 ORDER BY ... LIMIT n
where sp_func() is NOT declared as DETERMINISTIC (and so has
RAND_TABLE_BIT set).
The fix is to require evaluation for sorting only for the ROWNUM()
function. Functions that just have RAND_TABLE_BIT() can be computed
after ORDER BY ... LIMIT is applied.
(think about a possible index that satisfies the ORDER BY clause. In
that case, the the rows would be read in the needed order and we would
stop after reading LIMIT rows, achieving the same effect).