A memory leak happens on the second execution of a query that run in PS mode
and uses the function ROWNUM().
A memory leak took place on allocation of an instance of the class Item_int
for storing a limit value that is performed at the function set_limit_for_unit
indirectly called from JOIN::optimize_inner. Typical trace to the place where
the memory leak occurred is below:
JOIN::optimize_inner
optimize_rownum
process_direct_rownum_comparison
set_limit_for_unit
new (thd->mem_root) Item_int(thd, lim, MAX_BIGINT_WIDTH);
To fix this memory leak, calling of the function optimize_rownum()
has to be performed only once on first execution and never called
after that. To control it, the new data member
first_rownum_optimization
added into the structure st_select_lex.
Ideally our methods and functions should do one thing, do that well,
and do only that. add_table_to_list does far more than adding a
table to a list, so this commit factors the TABLE_LIST creation out
to a new TABLE_LIST constructor. It then uses placement new()
to create it in the correct memory area (result of thd->calloc).
Benefits of this approach:
1. add_table_to_list now returns as early as possible on an error
2. fewer side-effects incurred on creating the TABLE_LIST object
3. TABLE_LIST won't be calloc'd if copy_to_db fails
4. local declarations moved closer to their respective first uses
5. improved code readability and logical flow
Also factored a couple of other functions to keep the happy path
more to the left, which makes them easier to follow at a glance.
Problem:
sp_cache erroneously looked up fully qualified SP names (e.g. `DB`.`SP`),
in case insensitive style. It was wrong, because only the "name"
part is always case insensitive, while the "db" part should be compared
according to lower_case_table_names (case sensitively for 0,
case insensitively for 1 and 2).
Fix:
Adding a "casedn_name" parameter make_qname() to tell
if the name part should be lower cased:
`DB1`.`SP` -> "DB1.SP" (when casedn_name=false)
`DB1`.`SP` -> "DB1.sp" (when casedn_name=true)
and using make_qname() with casedn_name=true when creating
sp_cache hash lookup keys.
Details:
As a result, it now works as follows:
- sp_head::m_db is converted to lower case if lower_case_table_names>0
during the sp_name initialization phase. So when make_qname() is called,
sp_head::m_db is already normalized. There are no changes in here.
- The initialization phase of sp_head when creating sp_head::m_qname
now calls make_qname() with casedn_name=true,
so sp_head::m_name gets written to sp_head::m_qname in lower case.
- sp_cache_lookup() now also calls make_qname() with casedn_name=true,
so sp_head::m_name gets written to the temporary lookup key in lower case.
- sp_cache::m_hashtable now uses case sensitive comparison
Part#1 A non-functional change
Changing the signature of Identifier_chain2::make_qname() from
bool make_qname(MEM_ROOT *mem_root, LEX_CSTRING *dst) const;
to
LEX_CSTRING make_qname(MEM_ROOT *mem_root) const;
Now the result is returned as LEX_CSTRING from the function rather than
is passed as a parameter.
The return value {NULL,0} means "EOM".
This is a requirement step to fix and merge easier
MDEV-33019 The database part is not case sensitive in SP names
The original MDEV-31991 commit commend:
- Moving some of Database_qualified_name methods into a new class
Identifier_chain2.
- Changing the data type of the following variables from
Database_qualified_name to Identifier_chain2:
* q_pkg_proc in LEX::call_statement_start()
* q_pkg_func in LEX::make_item_func_call_generic()
Rationale:
The data type of Database_qualified_name::m_db will be changed
to Lex_ident_db soon. So Database_qualified_name won't be able
to store the `pkg.routine` part of `db.pkg.routine` any more,
because `pkg` must not depend on lower-case-table-names.
This patch adds PACKAGE support with SQL/PSM dialect for sql_mode=DEFAULT:
- CREATE PACKAGE
- DROP PACKAGE
- CREATE PACKAGE BODY
- DROP PACKAGE BODY
- Package function and procedure invocation from outside of the package:
-- using two step identifiers
SELECT pkg.f1();
CALL pkg.p1()
-- using three step identifiers
SELECT db.pkg.f1();
CALL db.pkg.p1();
This is a non-standard MariaDB extension.
However, later this code can be used to implement
the SQL Standard and DB2 dialects of CREATE MODULE.
1. WITHOUT/WITH VALIDATION may be added to EXCHANGE PARTITION or CONVERT TABLE:
alter table tp exchange partition p1 with table t with validation;
alter table tp exchange partition p1 with table t; -- same as with validation
alter table tp exchange partition p1 with table t without validation;
2. Optional THAN keyword for RANGE partitioning. Normally you type:
create table tp (a int primary key) partition by range (a) (
partition p0 values less than (100),
partition p1 values less than maxvalue);
Now you may type (PARTITION keyword is also optional):
create table tp (a int primary key) partition by range (a) (
p0 values less (100),
p1 values less maxvalue);
This is the follow-up patch that removes explicit use of thd->stmt_arena
for memory allocation and replaces it with call of the method
THD::active_stmt_arena_to_use()
Additionally, this patch adds extra DBUG_ASSERT to check that right
query arena is in use.
This patch is actually follow-up for the task
MDEV-23902: MariaDB crash on calling function
to use correct query arena for a statement. In case invocation of
a function is in progress use its call arena, else use current
query arena that can be either a statement or a regular query arena.
When parsing statements like (SELECT .. FROM ..) ORDER BY <expr>,
there is a step LEX::add_tail_to_query_expression_body_ext_parens()
which calls LEX::wrap_unit_into_derived(). After that the statement
looks like SELECT * FROM (SELECT .. FROM ..), and parser's
Lex_order_limit_lock structure (ORDER BY <expr>) is assigned to
the new SELECT. But what is missing here is that Items in
Lex_order_limit_lock are left with their original name resolution
contexts, and fix_fields() later resolves the names incorrectly.
For example, when processing
(SELECT * FROM t1 JOIN t2 ON a=b) ORDER BY a
Item_field 'a' in the ORDER BY clause is left with the name resolution
context of the derived table (first_name_resolution_table='t1'), so
it is resolved to 't1.a', which is incorrect.
After LEX::wrap_unit_into_derived() the statement looks like
SELECT * FROM (SELECT * FROM t1 JOIN t2 ON a=b) AS '__2' ORDER BY a,
and the name resolution context for Item_field 'a' in the ORDER BY
must be set to the wrapping SELECT's one.
This commit fixes the issue by changing context for Items in
Lex_order_limit_lock after LEX::wrap_unit_into_derived().