Galera replication does not support XA transactions yet. Reject any
attempt to `XA START` a transaction, if Galera is enabled.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
The reason for the failure is that
thd->mdl_context.release_transactional_locks()
was called after commit & rollback even in cases where the current
transaction is still active.
For 10.2, 10.3 and 10.4 the fix is simple:
- Replace all calls to thd->mdl_context.release_transactional_locks() with
thd->release_transactional_locks(). The thd function will only call
the mdl_context function if there are no active transactional locks.
In 10.6 we will better fix where we will change the return value for
some trans_xxx() functions to indicate if transaction did close the
transaction or not. This will avoid the need of the indirect call.
Other things:
- trans_xa_commit() and trans_xa_rollback() will automatically
call release_transactional_locks() if the transaction is closed.
- We can't do that for the other functions as the caller of many of these
are doing additional work (like close_thread_tables) before calling
release_transactional_locks().
- Added missing abort_result_set() and missing DBUG_RETURN in
select_create::send_eof()
- Fixed wrong indentation in injector::transaction::commit()
A wsrep transaction was started for EXECUTE IMMEDIATE, which
caused assertion failure when the executed statement was
CREATE TABLE which should be executed in TOI mode.
As a fix, don't start wsrep transaction for EXECUTE IMMEDIATE
to let the wsrep state logic to be handled from inside stored
procedure codepath.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
For debug build of MariaDB server running of the following test case
will hit the assert `thd->lex->sql_command == SQLCOM_UPDATE' in the function
check_fields() on attempt to execute the UPDATE statement.
CREATE TABLE t1 (a INT);
UPDATE t1 FOR PORTION OF APPTIME FROM (SELECT 1 FROM t1) TO 2 SET a = 1;
Stack trace to the fired assert statement
DBUG_ASSERT(thd->lex->sql_command == SQLCOM_UPDATE)
listed below:
mysql_execute_command() ->
mysql_multi_update_prepare() -->
Multiupdate_prelocking_strategy::handle_end() -->
check_fiels()
It's worth to note that this stack trace looks like a multi update
statement is being executed. The fired assert is checked inside the
function check_fields() in case table->has_period() returns the value
true that in turns happens when temporal period specified in the UPDATE
statement. Condition specified in the DEBUG_ASSERT statement returns
the false value since the data member thd->lex->sql_command have the
value SQLCOM_UPDATE_MULTI. So, the main question is why a program control
flow go to the path prescribed for handling MULTI update statement
despite of the fact that the ordinary UPDATE statement being executed.
The answer is a way that SQL grammar rules written.
When the statement
UPDATE t1 FOR PORTION OF APPTIME FROM (SELECT 1 FROM t1) TO 2 SET a = 1;
being parsed an action for the rule 'table_primary_ident' (part of this action
is listed below to simplify description) is invoked to handle the table
name 't1' specified in the clause 'SELECT 1 FROM t1'.
table_primary_ident:
table_ident opt_use_partition opt_for_system_time_clause
opt_table_alias_clause opt_key_definition
{
SELECT_LEX *sel= Select;
sel->table_join_options= 0;
if (!($$= Select->add_table_to_list(thd, $1, $4,
This action calls the method st_select_lex::add_table_to_list()
to add the table name 't1' to the list of tables being used by the statement.
Later, an action for the following grammar rule
update_table_list:
table_ident opt_use_partition for_portion_of_time_clause
opt_table_alias_clause opt_key_definition
{
SELECT_LEX *sel= Select;
sel->table_join_options= 0;
if (!($$= Select->add_table_to_list(thd, $1, $4,
is invoked to handle the clause 't1 FOR PORTION OF APPTIME FROM ... TO 2'.
This action also calls the method st_select_lex::add_table_to_list()
to add the table name 't1' to the list of tables being used by the statement.
In result the table name 't1' contained twice in this list.
Presence of duplicate names for the table 't1' in a list of table used by
a statement leads to the fact that the function unique_table() called
from the function mysql_update() returns the value true that forces
implementation of the function mysql_update() to return the value 2 as
a signal to fall through the case boundary of the switch statement placed
in the function mysql_execute_statement() and start handling of the case
for sql_command SQLCOM_UPDATE_MULTI. The compound statement block for the
case SQLCOM_UPDATE_MULTI invokes the function mysql_multi_update_prepare()
that executes the statement
set thd->lex->sql_command= SQLCOM_UPDATE_MULTI;
and after that calls the method
Multiupdate_prelocking_strategy::handle_end(). Finally, this method
invokes the check_field() function and assert is fired.
The above analysis shows that update for a table that simultaneously specified
both as a destination table of UPDATE statement and as a table taking part in
subquery is actually treated by MariaDB server as multi-update statement.
Taking into account that multi-update statement for temporal period
table is not supported yet by MariaDB, correct way to fix the bug is to return
the error ER_NOT_SUPPORTED_YET for this case.
ANALYSIS:
=========
During Bootstrap, while executing the statements from sql
file passed to the init-file server option, transaction
mem_root was being freed for every statement. This creates
an issue with multi statement transactions especially when a
statement in the transaction has to access the memory used
by the previous statement in the transaction.
FIX:
====
Transaction mem_root is freed whenever a transaction is
committed or rolled-back. Hence explicitly freeing it is not
necessary in the bootstrap implementation.
Change-Id: I40f71d49781bf7ad32d474bb176bd6060c9377dc
`LOCK TABLES view_name` should require
* invoker to have SELECT and LOCK TABLES privileges on the view
* either invoker or definer (only if sql security definer) to
have SELECT and LOCK TABLES privileges on the used tables/views.
Reimplement MDEV-14275 Improving memory utilization for information schema
Postpone temp table instantiation until after setup_fields().
Replace all unused (not marked in read_set) columns in an I_S table
with CHAR(0). This can drastically reduce the footprint of a MEMORY
table (a TABLE_CATALOG alone is 1538 bytes per row).
This does not change the engine. If the table was decided to be Aria
(because of, say, blobs) then after optimization it'll stay Aria
even if all blobs were removed.
Note 1: when transforming table structure, share->blob_fields is
preserved, otherwise Aria might switch from DYNAMIC to STATIC row format
and expect a special field for a deleted mark, which create_tmp_tabe
didn't provide.
Note 2: optimizer was doing handler::info() (to know the number of rows)
before the temp table is populated. That didn't make much sense. Now
it's done before the table is even instantiated. Preserve the old
behavior and report 0 rows.
This reverts e2664ee8362 and a8458a2345e
MDEV-20945: BACKUP UNLOCK + FTWRL assertion failure | SIGSEGV in I_P_List
from MDL_context::release_lock on INSERT w/ BACKUP LOCK (on optimized
builds) | Assertion `ticket->m_duration == MDL_EXPLICIT' failed
BACKUP LOCK behavior is modified so it won't be used wrong:
- BACKUP LOCK should commit any active transactions.
- BACKUP LOCK should not be allowed in stored procedures.
- When BACKUP LOCK is active, don't allow any DDL's for that connection.
- FTWRL is forbidden on the same connection while BACKUP LOCK is active.
Reviewed-by: monty@mariadb.com
This commit fixed the problems with S3 after the "DROP TABLE FORCE" changes.
It also fixes all failing replication S3 tests.
A slave is delayed if it is trying to execute replicated queries on a
table that is already converted to S3 by the master later in the binlog.
Fixes for replication events on S3 tables for delayed slaves:
- INSERT and INSERT ... SELECT and CREATE TABLE are ignored but written
to the binary log. UPDATE & DELETE will be fixed in a future commit.
Other things:
- On slaves with --s3-slave-ignore-updates set, allow S3 tables to be
opened in read-write mode. This was done to be able to
ignore-but-replicate queries like insert. Without this change any
open of an S3 table failed with 'Table is read only' which is too
early to be able to replicate the original query.
- Errors are now printed if handler::extra() call fails in
wait_while_tables_are_used().
- Error message for row changes are changed from HA_ERR_WRONG_COMMAND
to HA_ERR_TABLE_READONLY.
- Disable some maria_extra() calls for S3 tables. This could cause
S3 tables to fail in some cases.
- Added missing thr_lock_delete() to ma_open() in case of failure.
- Removed from mysql_prepare_insert() the not needed argument 'table'.
Appoligies, had a dirty branch before pushing:
This reverts commit 053653a23cac6f3f2e5288979438de27c9d0100a.
This reverts commit 0ff897807fc2f4a32e1ba1ae148005930ea604b5.
This reverts commit 85b085972b729f6c049050f851692c9a5b86f3d5.
This reverts commit f3f45e46b614bddcef0a37f4352c5909ca565d1d.
This reverts commit a470b3570a7ce2534c9021f3b84d7457a3ba08e1.
This reverts commit f8b8d202bc83d3de46c89ef86333fe602e711265.
This reverts commit 6b6f066fdd9f5f64813ded550e7dbda176ee3c82.
This reverts commit a701e9e6c390c3cbac69872e95b1aec565341d30.
This reverts commit c169838611e13c9f0559b2f49ba8c36aec11a78b.
Protocol_local fixed so it can be used now.
Some Protocol:: methods made virtual so they can adapt.
as well as net_ok and net_send_error functions.
execute_sql_string function is exported to the plugins.
To be changed with the mysql_use_result.
In case of NATURAL JOIN / USING mark all field (one table can not be opened
in any case so optimisation does not worth it).
IMHO table should be checked for used fields and filled after prepare,
when we will fave whole info about used fields but it is too big change
for a bugfix. Which will be made later by Serg patch
An assertion
`server_state_.rollback_mode() == wsrep::server_state::rm_async`
fired in before_command() when
- thread-handling was set to pool-of-threads and
- a BF abort happened between client session calls to
wait_rollback_complete_and_acquire_ownership() and before_command().
This commit introduces a test case to reproduce the crash and
updates wsrep-lib submodule to fixed version.
When high priority replication slave applier encounters lock conflict in innodb,
it will force the conflicting lock holder transaction (victim) to rollback.
This is a must in multi-master sychronous replication model to avoid cluster lock-up.
This high priority victim abort (aka "brute force" (BF) abort), is started
from innodb lock manager while holding the victim's transaction's (trx) mutex.
Depending on the execution state of the victim transaction, it may happen that the
BF abort will call for THD::awake() to wake up the victim transaction for the rollback.
Now, if BF abort requires THD::awake() to be called, then the applier thread executed
locking protocol of: victim trx mutex -> victim THD::LOCK_thd_data
If, at the same time another DBMS super user issues KILL command to abort the same victim,
it will execute locking protocol of: victim THD::LOCK_thd_data -> victim trx mutex.
These two locking protocol acquire mutexes in opposite order, hence unresolvable mutex locking
deadlock may occur.
The fix in this commit adds THD::wsrep_aborter flag to synchronize who can kill the victim
This flag is set both when BF is called for from innodb and by KILL command.
Either path of victim killing will bail out if victim's wsrep_killed is already
set to avoid mutex conflicts with the other aborter execution. THD::wsrep_aborter
records the aborter THD's ID. This is needed to preserve the right to kill
the victim from different locations for the same aborter thread.
It is also good error logging, to see who is reponsible for the abort.
A new test case was added in galera.galera_bf_kill_debug.test for scenario where
wsrep applier thread and manual KILL command try to kill same idle victim
The issue was:
T1, a parallel slave worker thread, is waiting for another worker thread to
commit. While waiting, it has the MDL_BACKUP_COMMIT lock.
T2, working for mariabackup, is doing BACKUP STAGE BLOCK_COMMIT and blocks
all commits.
This causes a deadlock as the thread T1 is waiting for can't commit.
Fixed by moving locking of MDL_BACKUP_COMMIT from ha_commit_trans() to
commit_one_phase_2()
Other things:
- Added a new argument to ha_comit_one_phase() to signal if the
transaction was a write transaction.
- Ensured that ha_maria::implicit_commit() is always called under
MDL_BACKUP_COMMIT. This code is not needed in 10.5
- Ensure that MDL_Request values 'type' and 'ticket' are always
initialized. This makes it easier to check the state of the MDL_Request.
- Moved thd->store_globals() earlier in handle_rpl_parallel_thread() as
thd->init_for_queries() could use a MDL that could crash if store_globals
where not called.
- Don't call ha_enable_transactions() in THD::init_for_queries() as this
is both slow (uses MDL locks) and not needed.
* Allocate items on thd->mem_root while refixing vcol exprs
* Make vcol tree changes register and roll them back after the statement is executed.
Explanation:
Due to collation implementation specifics an Item tree could change while fixing.
The tricky thing here is to make it on a proper arena.
It's usually not a problem when a field is deterministic, however, makes a pain vice-versa, during allocation allocating.
A non-deterministic field should be refixed on each statement, since it depends on the environment state.
Changing the tree will be temporary and therefore it should be reverted after the statement execution.