column generated using date_format() and if()
vcol_info->expr is allocated on expr_arena at parsing stage. Since
expr item is allocated on expr_arena all its containee items must be
allocated on expr_arena too. Otherwise fix_session_expr() will
encounter prematurely freed item.
When table is reopened from cache vcol_info contains stale
expression. We refresh expression via TABLE::vcol_fix_exprs() but
first we must prepare a proper context (Vcol_expr_context) which meets
some requirements:
1. As noted above expr update must be done on expr_arena as there may
be new items created. It was a bug in fix_session_expr_for_read() and
was just not reproduced because of no second refix. Now refix is done
for more cases so it does reproduce. Tests affected: vcol.binlog
2. Also name resolution context must be narrowed to the single table.
Tested by: vcol.update main.default vcol.vcol_syntax gcol.gcol_bugfixes
3. sql_mode must be clean and not fail expr update.
sql_mode such as MODE_NO_BACKSLASH_ESCAPES, MODE_NO_ZERO_IN_DATE, etc
must not affect vcol expression update. If the table was created
successfully any further evaluation must not fail. Tests affected:
main.func_like
Reviewed by: Sergei Golubchik <serg@mariadb.org>
1. moved fix_vcol_exprs() call to open_table()
mysql_alter_table() doesn't do lock_tables() so it cannot win from
fix_vcol_exprs() from there. Tests affected: main.default_session
2. Vanilla cleanups and comments.
Preparation for handling different kinds of histograms:
- In Column_statistics, change "Histogram histogram" into
"Histogram *histogram_". This allows for different kinds
of Histogram classes with virtual functions.
- [Almost] remove the usage of Histogram->set_values and
Histogram->set_size. The code outside the histogram should
not make any assumptions about what/how is stored in the Histogram.
- Introduce drafts of methods to read/save histograms to/from disk.
Update was skipped (need_update was false) because compare_record()
used HA_PARTIAL_COLUMN_READ branch and it skipped row_start check
has_explicit_value() was false. When we set bit for row_start in
has_value_set the row is updated with new row_start value.
The bug was caused by combination of MDEV-23446 and 3789692d17. The
latter one says:
... But generated columns that are written to the table are always
deterministic and cannot change unless normal non-generated columns
were changed. ...
Since MDEV-23446 generated row_start can change while non-generated
columns are not changed.
Explicit value flag came from HAS_EXPLICIT_DEFAULT which was used to
distinguish default-generated value from user-supplied one.
Reformulate mark_columns_used_by_index* function family in a more laconic
way:
mark_columns_used_by_index -> mark_index_columns
mark_columns_used_by_index_for_read_no_reset -> mark_index_columns_for_read
mark_columns_used_by_index_no_reset -> mark_index_columns_no_reset
static mark_index_columns -> do_mark_index_columns
Several different test cases were failing under the same reason: the
fields in a vcol expression were not marked during marking columns of a key
contatining virtual column for read.
Fix: make marking columns of a key for read a special case where
register_field_in_read_map() is done instead of plain bitmap_set_bit().
Some test cases are only reproducible in 10.4+, but the fix is applicable
to 10.2+
This replaces 8711adb786
if a temptable field is created for some json expression (is_json_type()
returns true), make this temptable field a proper json field.
A field is a json field (see Item_field::is_json_type()) if it
has a CHECK constraint of JSON_VALID(field).
Note that it will never be actually checked for temptable fields,
so it won't cause a run-time slowdown.
Removed Field_map, since it was used only in a single function.
Fixed is_indexed_agg_distinct(), since it relied on initialization of
Bitmap in constructor.
Fixes MDEV-25888 in 10.4
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
# Conflicts:
# sql/sql_cte.cc
# sql/sql_cte.h
# sql/sql_lex.cc
# sql/sql_lex.h
# sql/sql_view.cc
# sql/sql_yacc.yy
# sql/sql_yacc_ora.yy
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
- Changed order of class fields to remove dead alignment space.
- Changed bool fields in Item to bit fields.
- Used packed enum's for some fields in common classes
- Removed not used Item::rsize.
- Changed some class variables from uint/int to smaller type int's.
- Ensured that field_index is uint16 in all classes and functions. Fixed
also that we proparly compare with NO_CACHED_FIELD_INDEX when checking
if variable is not set.
- Removed checking of highest bit of unireg_check (has not been used in
a long time)
- Fixed wrong arguments to make_cond_for_table() for join_tab_idx_arg
from false to 0.
One of the result was reducing the size if class Item with ~24 bytes
Adds an implementation for SELECT ... FOR UPDATE SKIP LOCKED /
SELECT ... LOCK IN SHARED MODE SKIP LOCKED
This is implemented only InnoDB at the moment, not in RockDB yet.
This adds a new hander flag HA_CAN_SKIP_LOCKED than
will be used when the storage engine advertises the flag.
When a storage engine indicates this flag it will get
TL_WRITE_SKIP_LOCKED and TL_READ_SKIP_LOCKED transaction types.
The Lex structure has been updated to store both the FOR UPDATE/LOCK IN
SHARE as well as the SKIP LOCKED so the SHOW CREATE VIEW
implementation is simplier.
"SELECT FOR UPDATE ... SKIP LOCKED" combined with CREATE TABLE AS or
INSERT.. SELECT on the result set is not safe for STATEMENT based
replication. MIXED replication will replicate this as row based events."
Thanks to guidance from Facebook commit
193896c466
This helped verify basic test case, and components that need implementing
(even though every part was implemented differently).
Thanks Marko for guidance on simplier InnoDB implementation.
Reviewers: Marko, Monty
Use < TL_FIRST_WRITE for determining a READ transaction.
Use TL_FIRST_WRITE as the relative operator replacing TL_WRITE_ALLOW_WRITE
as the minimium WRITE lock type.
This feature adds the functionality of ignorability for indexes.
Indexes are not ignored be default.
To control index ignorability explicitly for a new index,
use IGNORE or NOT IGNORE as part of the index definition for
CREATE TABLE, CREATE INDEX, or ALTER TABLE.
Primary keys (explicit or implicit) cannot be made ignorable.
The table INFORMATION_SCHEMA.STATISTICS get a new column named IGNORED that
would store whether an index needs to be ignored or not.
The failure happened for group by queries when all tables where marked as
'const tables' (tables with 0-1 matching rows) and no row matched the
where clause and there was in addition a direct reference to a field.
In this case the field would not be properly reset and the query would
return 'random data' that happended to be in table->record[0].
Fixed by marking all const tables as null tables in this particular case.
Sergei also provided an extra test case for the code.
@reviewer Sergei Petrunia <psergey@askmonty.org>