The MDEV-25004 test innodb_fts.versioning is omitted because ever since
commit 685d958e38 InnoDB would not allow
writes to a database where the redo log file ib_logfile0 is missing.
1. In case of system-versioned table add row_end into FTS_DOC_ID index
in fts_create_common_tables() and innobase_create_key_defs().
fts_n_uniq() returns 1 or 2 depending on whether the table is
system-versioned.
After this patch recreate of FTS_DOC_ID index is required for
existing system-versioned tables. If you see this message in error
log or server warnings: "InnoDB: Table db/t1 contains 2 indexes
inside InnoDB, which is different from the number of indexes 1
defined in the MariaDB" use this command to fix the table:
ALTER TABLE db.t1 FORCE;
2. Fix duplicate history for secondary unique index like it was done
in MDEV-23644 for clustered index (932ec586aa). In case of
existing history row which conflicts with currently inseted row we
check in row_ins_scan_sec_index_for_duplicate() whether that row
was inserted as part of current transaction. In that case we
indicate with DB_FOREIGN_DUPLICATE_KEY that new history row is not
needed and should be silently skipped.
3. Some parts of MDEV-21138 (7410ff436e) reverted. Skipping of
FTS_DOC_ID index for history rows made problems with purge
system. Now this is fixed differently by p.2.
4. wait_all_purged.inc checks that we didn't affect non-history rows
so they are deleted and purged correctly.
Additional FTS fixes
fts_init_get_doc_id(): exclude history rows from max_doc_id
calculation. fts_init_get_doc_id() callback is used only for crash
recovery.
fts_add_doc_by_id(): set max value for row_end field.
fts_read_stopword(): stopwords table can be system-versioned too. We
now read stopwords only for current data.
row_insert_for_mysql(): exclude history rows from doc_id validation.
row_merge_read_clustered_index(): exclude history_rows from doc_id
processing.
fts_load_user_stopword(): for versioned table retrieve row_end field
and skip history rows. For non-versioned table we retrieve 'value'
field twice (just for uniformity).
FTS tests for System Versioning now include maybe_versioning.inc which
adds 3 combinations:
'vers' for debug build sets sysvers_force and
sysvers_hide. sysvers_force makes every created table
system-versioned, sysvers_hide hides WITH SYSTEM VERSIONING
for SHOW CREATE.
Note: basic.test, stopword.test and versioning.test do not
require debug for 'vers' combination. This is controlled by
$modify_create_table in maybe_versioning.inc and these
tests run WITH SYSTEM VERSIONING explicitly which allows to
test 'vers' combination on non-debug builds.
'vers_trx' like 'vers' sets sysvers_force_trx and sysvers_hide. That
tests FTS with trx_id-based System Versioning.
'orig' works like before: no System Versioning is added, no debug is
required.
Upgrade/downgrade test for System Versioning is done by
innodb_fts.versioning. It has 2 combinations:
'prepare' makes binaries in std_data (requires old server and OLD_BINDIR).
It tests upgrade/downgrade against old server as well.
'upgrade' tests upgrade against binaries in std_data.
Cleanups:
Removed innodb-fts-stopword.test as it duplicates stopword.test
Specifically:
Revert "MDEV-29664 Assertion `!n_mysql_tables_in_use' failed in innobase_close_connection"
This reverts commit ba875e9396.
Revert "MDEV-29620 Assertion `next_insert_id == 0' failed in handler::ha_external_lock"
This reverts commit aa08a7442a.
Revert "MDEV-29628 Memory leak after CREATE OR REPLACE with foreign key"
This reverts commit c579d66ba6.
Revert "MDEV-29609 create_not_windows test fails with different result"
This reverts commit cb583b2f1b.
Revert "MDEV-29544 SIGSEGV in HA_CREATE_INFO::finalize_locked_tables"
This reverts commit dcd66c3814.
Revert "MDEV-28933 CREATE OR REPLACE fails to recreate same constraint name"
This reverts commit cf6c517632.
Revert "MDEV-28933 Moved RENAME_CONSTRAINT_IDS to include/sql_funcs.h"
This reverts commit f1e1c1335b.
Revert "MDEV-28956 Locking is broken if CREATE OR REPLACE fails under LOCK TABLES"
This reverts commit a228ec80e3.
Revert "MDEV-25292 gcol.gcol_bugfixes --ps fix"
This reverts commit 24fff8267d.
Revert "MDEV-25292 Disable atomic replace for slave-generated or-replace"
This reverts commit 2af15914cb.
Revert "MDEV-25292 backup_log improved"
This reverts commit 34398a20b5.
Revert "MDEV-25292 Atomic CREATE OR REPLACE TABLE"
This reverts commit 93c8252f02.
Revert "MDEV-25292 Table_name class for (db, table_name, alias)"
This reverts commit d145dda9c7.
Revert "MDEV-25292 ha_table_exists() cleanup and improvement"
This reverts commit 409b8a86de.
Revert "MDEV-25292 Cleanups"
This reverts commit 595dad83ad.
Revert "MDEV-25292 Refactoring: moved select_field_count into Alter_info."
This reverts commit f02af1d229.
To prevent ASAN heap-use-after-poison in the MDEV-16549 part of
./mtr --repeat=6 main.derived
the initialization of Name_resolution_context was cleaned up.
=========== Problem =============
- `show columns` is not working for temporary tables, even though there
is enough privilege `create temporary tables`.
=========== Solution =============
- Append `TMP_TABLE_ACLS` privilege when running `show columns` for temp
tables.
- Additionally `check_access()` for database only once, not for each
field
=========== Additionally =============
- Update comments for function `check_table_access` arguments
Reviewed by: <vicentiu@mariadb.org>
For queries like
"SELECT * FROM INFORMATION_SCHEMA.PARAMETERS
WHERE SPECIFIC_NAME='proc_name'"
and
"SELECT * FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_NAME='proc_name'"
there is a possibility to avoid loading of the stored procedure code
and parsing it to retrieve parameters.
If the name of the procedure/function is specified explicitly then
it is possible to filter out routines that do not match at
an early stage.
Queries to INFORMATION_SCHEMA.PARAMETERS and ROUTINES tables are always
performed using full index scan of the mysql.proc primary key
on fields (`db`,`name`,`type`). This can be done in a much more effective
way if `db` and `name` field values can be derived from the WHERE statement,
like here:
SELECT * FROM INFORMATION_SCHEMA.PARAMETERS
WHERE SPECIFIC_SCHEMA = 'test' AND SPECIFIC_NAME = 'my_func'
or here:
SELECT * FROM information_schema.ROUTINES
WHERE ROUTINE_SCHEMA='test' AND ROUTINE_NAME='my_func'.
In such cases index range scan may be employed instead of full index
scan. This commit makes the server retrieve lookup field values from
the SQL statement and perform index range scan instead of full index
scan if possible.
The problem is that if table definition cache (TDC) is full of real tables
which are in tables cache, view definition can not stay there so will be
removed by its own underlying tables.
In situation above old mechanism of detection matching definition in PS
and current version always require reprepare and so prevent executing
the PS.
One work around is to increase TDC, other - improve version check for
views/triggers (which is done here). Now in suspicious cases we check:
- timestamp (microseconds) of the view to be sure that version really
have changed;
- time (microseconds) of creation of a trigger related to time
(microseconds) of statement preparation.
- Added missing information about database of corresponding table for various types of commands
- Update some typos
- Reviewed by: <vicentiu@mariadb.org>
- Commit c8948b0d0d introduced `get_one_variable()` - updating missing argument.
- Remove caller setting of empty string in `rpl_filter`, since underlying functions will do the same
(commit 9584cbe7fc introduced).
Reviewed by: <brandon.nesterenko@mariadb.com>
Atomic CREATE OR REPLACE allows to keep an old table intact if the
command fails or during the crash. That is done through creating
a table with a temporary name and filling it with the data
(for CREATE OR REPLACE .. SELECT), then renaming the original table
to another temporary (backup) name and renaming the replacement table
to original table. The backup table is kept until the last chance of
failure and if that happens, the replacement table is thrown off and
backup recovered. When the command is complete and logged the backup
table is deleted.
Atomic replace algorithm
Two DDL chains are used for CREATE OR REPLACE:
ddl_log_state_create (C) and ddl_log_state_rm (D).
1. (C) Log CREATE_TABLE_ACTION of TMP table (drops TMP table);
2. Create new table as TMP;
3. Do everything with TMP (like insert data);
finalize_atomic_replace():
4. Link chains: (D) is executed only if (C) is closed;
5. (D) Log DROP_ACTION of BACKUP;
6. (C) Log RENAME_TABLE_ACTION from ORIG to BACKUP (replays BACKUP -> ORIG);
7. Rename ORIG to BACKUP;
8. (C) Log CREATE_TABLE_ACTION of ORIG (drops ORIG);
9. Rename TMP to ORIG;
finalize_ddl() in case of success:
10. Close (C);
11. Replay (D): BACKUP is dropped.
finalize_ddl() in case of error:
10. Close (D);
11. Replay (C):
1) ORIG is dropped (only after finalize_atomic_replace());
2) BACKUP renamed to ORIG (only after finalize_atomic_replace());
3) drop TMP.
If crash happens (C) or (D) is replayed in reverse order. (C) is
replayed if crash happens before it is closed, otherwise (D) is
replayed.
Temporary table for CREATE OR REPLACE
Before dropping "old" table, CREATE OR REPLACE creates "tmp" table.
ddl_log_state_create holds the drop of the "tmp" table. When
everything is OK (data is inserted, "tmp" is ready) ddl_log_state_rm
is written to replace "old" with "tmp". Until ddl_log_state_create
is closed ddl_log_state_rm is not executed.
After the binlogging is done ddl_log_state_create is closed. At that
point ddl_log_state_rm is executed and "tmp" is replaced with
"old". That is: final rename is done by the DDL log.
With that important role of DDL log for CREATE OR REPLACE operation
replay of ddl_log_state_rm must fail at the first hit error and
print the error message if possible. F.ex. foreign key error is
discovered at this phase: InnoDB rejects to drop the "old" table and
returns corresponding foreign key error code.
Additional notes
- CREATE TABLE without REPLACE is not affected by this commit.
- Engines having HTON_EXPENSIVE_RENAME flag set are not affected by
this commit.
- CREATE TABLE .. SELECT XID usage is fixed and now there is no need
to log DROP TABLE via DDL_CREATE_TABLE_PHASE_LOG (see comments in
do_postlock()). XID is now correctly updated so it disables
DDL_LOG_DROP_TABLE_ACTION. Note that binary log is flushed at the
final stage when the table is ready. So if we have XID in the
binary log we don't need to drop the table.
- Three variations of CREATE OR REPLACE handled:
1. CREATE OR REPLACE TABLE t1 (..);
2. CREATE OR REPLACE TABLE t1 LIKE t2;
3. CREATE OR REPLACE TABLE t1 SELECT ..;
- Test case uses 6 combinations for engines (aria, aria_notrans,
myisam, ib, lock_tables, expensive_rename) and 2 combinations for
binlog types (row, stmt). Combinations help to check differences
between the results. Error failures are tested for the above three
variations.
- expensive_rename tests CREATE OR REPLACE without atomic
replace. The effect should be the same as with the old behaviour
before this commit.
- Triggers mechanism is unaffected by this change. This is tested in
create_replace.test.
- LOCK TABLES is affected. Lock restoration must be done after "rm"
chain is replayed.
- Moved ddl_log_complete() from send_eof() to finalize_ddl(). This
checkpoint was not executed before for normal CREATE TABLE but is
executed now.
- CREATE TABLE will now rollback also if writing to the binary
logging failed. See rpl_gtid_strict.test
Rename and drop via DDL log
We replay ddl_log_state_rm to drop the old table and rename the
temporary table. In that case we must throw the correct error
message if ddl_log_revert() fails (f.ex. on FK error).
If table is deleted earlier and not via DDL log and the crash
happened, the create chain is not closed. Linked drop chain is not
executed and the new table is not installed. But the old table is
already deleted.
ddl_log.cc changes
Now we can place action before DDL_LOG_DROP_INIT_ACTION and it will
be replayed after DDL_LOG_DROP_TABLE_ACTION.
report_error parameter for ddl_log_revert() allows to fail at first
error and print the error message if possible.
ddl_log_execute_action() now can print error message.
Since we now can handle errors from ddl_log_execute_action() (in
case of non-recovery execution) unconditional setting "error= TRUE"
is wrong (it was wrong anyway because it was overwritten at the end
of the function).
On XID usage
Like with all other atomic DDL operations XID is used to avoid
inconsistency between master and slave in the case of a crash after
binary log is written and before ddl_log_state_create is closed. On
recovery XIDs are taken from binary log and corresponding DDL log
events get disabled. That is done by
ddl_log_close_binlogged_events().
On linking two chains together
Chains are executed in the ascending order of entry_pos of execute
entries. But entry_pos assignment order is undefined: it may assign
bigger number for the first chain and then smaller number for the
second chain. So the execution order in that case will be reverse:
second chain will be executed first.
To avoid that we link one chain to another. While the base chain
(ddl_log_state_create) is active the secondary chain
(ddl_log_state_rm) is not executed. That is: only one chain can be
executed in two linked chains.
The interface ddl_log_link_chains() was done in "MDEV-22166
ddl_log_write_execute_entry() extension".
More on CREATE OR REPLACE .. SELECT
We use create_and_open_tmp_table() like in ALTER TABLE to create
temporary TABLE object (tmp_table is (NON_)TRANSACTIONAL_TMP_TABLE).
After we created such TABLE object we use create_info->tmp_table()
instead of table->s->tmp_table when we need to check for
parser-requested tmp-table.
External locking is required for temporary table created by
create_and_open_tmp_table(). F.ex. that disables logging for Aria
transactional tables and without that (when no mysql_lock_tables()
is done) it cannot work correctly.
For making external lock the patch requires Aria table to work in
non-transactional mode. That is usually done by
ha_enable_transaction(false). But we cannot disable transaction
completely because: 1. binlog rollback removes pending row events
(binlog_remove_pending_rows_event()). The row events are added
during CREATE .. SELECT data insertion phase. 2. replication slave
highly depends on transaction and cannot work without it.
So we put temporary Aria table into non-transactional mode with
"thd->transaction->on hack". See comment for on_save variable.
Note that Aria table has internal_table mode. But we cannot use it
because:
if (!internal_table)
{
mysql_mutex_lock(&THR_LOCK_myisam);
old_info= test_if_reopen(name_buff);
}
For internal_table test_if_reopen() is not called and we get a new
MARIA_SHARE for each file handler. In that case duplicate errors are
missed because insert and lookup in CREATE .. SELECT is done via two
different handlers (see create_lookup_handler()).
For temporary table before dropping TABLE_SHARE by
drop_temporary_table() we must do ha_reset(). ha_reset() releases
storage share. Without that the share is kept and the second CREATE
OR REPLACE .. SELECT fails with:
HA_ERR_TABLE_EXIST (156): MyISAM table '#sql-create-b5377-4-t2' is
in use (most likely by a MERGE table). Try FLUSH TABLES.
HA_EXTRA_PREPARE_FOR_DROP also removes MYISAM_SHARE, but that is
not needed as ha_reset() does the job.
ha_reset() is usually done by
mark_tmp_table_as_free_for_reuse(). But we don't need that mechanism
for our temporary table.
Atomic_info in HA_CREATE_INFO
Many functions in CREATE TABLE pass the same parameters. These
parameters are part of table creation info and should be in
HA_CREATE_INFO (or whatever). Passing parameters via single
structure is much easier for adding new data and
refactoring.
InnoDB changes (revised by Marko Mäkelä)
row_rename_table_for_mysql(): Specify the treatment of FOREIGN KEY
constraints in a 4-valued enum parameter. In cases where FOREIGN KEY
constraints cannot exist (partitioned tables, or internal tables of
FULLTEXT INDEX), we can use the mode RENAME_IGNORE_FK.
The mod RENAME_REBUILD is for any DDL operation that rebuilds the
table inside InnoDB, such as TRUNCATE and native ALTER TABLE
(or OPTIMIZE TABLE). The mode RENAME_ALTER_COPY is used solely
during non-native ALTER TABLE in ha_innobase::rename_table().
Normal ha_innobase::rename_table() will use the mode RENAME_FK.
CREATE OR REPLACE will rename the old table (if one exists) along
with its FOREIGN KEY constraints into a temporary name. The replacement
table will be initially created with another temporary name.
Unlike in ALTER TABLE, all FOREIGN KEY constraints must be renamed
and not inherited as part of these operations, using the mode RENAME_FK.
dict_get_referenced_table(): Let the callers convert names when needed.
create_table_info_t::create_foreign_keys(): CREATE OR REPLACE creates
the replacement table with a temporary name table, so for
self-references foreign->referenced_table will be a table with
temporary name and charset conversion must be skipped for it.
Reviewed by:
Michael Widenius <monty@mariadb.org>
- Added one neutral and 22 tailored (language specific) collations based on
Unicode Collation Algorithm version 14.0.0.
Collations were added for Unicode character sets
utf8mb3, utf8mb4, ucs2, utf16, utf32.
Every tailoring was added with four accent and case
sensitivity flag combinations, e.g:
* utf8mb4_uca1400_swedish_as_cs
* utf8mb4_uca1400_swedish_as_ci
* utf8mb4_uca1400_swedish_ai_cs
* utf8mb4_uca1400_swedish_ai_ci
and their _nopad_ variants:
* utf8mb4_uca1400_swedish_nopad_as_cs
* utf8mb4_uca1400_swedish_nopad_as_ci
* utf8mb4_uca1400_swedish_nopad_ai_cs
* utf8mb4_uca1400_swedish_nopad_ai_ci
- Introducing a conception of contextually typed named collations:
CREATE DATABASE db1 CHARACTER SET utf8mb4;
CREATE TABLE db1.t1 (a CHAR(10) COLLATE uca1400_as_ci);
The idea is that there is no a need to specify the character set prefix
in the new collation names. It's enough to type just the suffix
"uca1400_as_ci". The character set is taken from the context.
In the above example script the context character set is utf8mb4.
So the CREATE TABLE will make a column with the collation
utf8mb4_uca1400_as_ci.
Short collations names can be used in any parts of the SQL syntax
where the COLLATE clause is understood.
- New collations are displayed only one time
(without character set combinations) by these statements:
SELECT * FROM INFORMATION_SCHEMA.COLLATIONS;
SHOW COLLATION;
For example, all these collations:
- utf8mb3_uca1400_swedish_as_ci
- utf8mb4_uca1400_swedish_as_ci
- ucs2_uca1400_swedish_as_ci
- utf16_uca1400_swedish_as_ci
- utf32_uca1400_swedish_as_ci
have just one entry in INFORMATION_SCHEMA.COLLATIONS and SHOW COLLATION,
with COLLATION_NAME equal to "uca1400_swedish_as_ci", which is the suffix
without the character set name:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+
| COLLATION_NAME |
+-----------------------+
| uca1400_swedish_as_ci |
+-----------------------+
Note, the behaviour of old collations did not change.
Non-unicode collations (e.g. latin1_swedish_ci) and
old UCA-4.0.0 collations (e.g. utf8mb4_unicode_ci)
are still displayed with the character set prefix, as before.
- The structure of the table INFORMATION_SCHEMA.COLLATIONS was changed.
The NOT NULL constraint was removed from these columns:
- CHARACTER_SET_NAME
- ID
- IS_DEFAULT
and from the corresponding columns in SHOW COLLATION.
For example:
SELECT COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+--------------------+------+------------+
| COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT |
+-----------------------+--------------------+------+------------+
| uca1400_swedish_as_ci | NULL | NULL | NULL |
+-----------------------+--------------------+------+------------+
The NULL value in these columns now means that the collation
is applicable to multiple character sets.
The behavioir of old collations did not change.
Make sure your client programs can handle NULL values in these columns.
- The structure of the table
INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY was changed.
Three new NOT NULL columns were added:
- FULL_COLLATION_NAME
- ID
- IS_DEFAULT
New collations have multiple entries in COLLATION_CHARACTER_SET_APPLICABILITY.
The column COLLATION_NAME contains the collation name without the character
set prefix. The column FULL_COLLATION_NAME contains the collation name with
the character set prefix.
Old collations have full collation name in both FULL_COLLATION_NAME and
COLLATION_NAME.
SELECT COLLATION_NAME, FULL_COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
WHERE FULL_COLLATION_NAME RLIKE '^(utf8mb4|latin1).*swedish.*ci$';
+-----------------------------+-------------------------------------+--------------------+------+------------+
| COLLATION_NAME | FULL_COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT |
+-----------------------------+-------------------------------------+--------------------+------+------------+
| latin1_swedish_ci | latin1_swedish_ci | latin1 | 8 | Yes |
| latin1_swedish_nopad_ci | latin1_swedish_nopad_ci | latin1 | 1032 | |
| utf8mb4_swedish_ci | utf8mb4_swedish_ci | utf8mb4 | 232 | |
| uca1400_swedish_ai_ci | utf8mb4_uca1400_swedish_ai_ci | utf8mb4 | 2368 | |
| uca1400_swedish_as_ci | utf8mb4_uca1400_swedish_as_ci | utf8mb4 | 2370 | |
| uca1400_swedish_nopad_ai_ci | utf8mb4_uca1400_swedish_nopad_ai_ci | utf8mb4 | 2372 | |
| uca1400_swedish_nopad_as_ci | utf8mb4_uca1400_swedish_nopad_as_ci | utf8mb4 | 2374 | |
+-----------------------------+-------------------------------------+--------------------+------+------------+
- Other INFORMATION_SCHEMA queries:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS;
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.PARAMETERS;
SELECT TABLE_COLLATION FROM INFORMATION_SCHEMA.TABLES;
SELECT DEFAULT_COLLATION_NAME FROM INFORMATION_SCHEMA.SCHEMATA;
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.ROUTINES;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.EVENTS;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.EVENTS;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.ROUTINES;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.ROUTINES;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.VIEWS;
display full collation names, including character sets prefix,
for all collations, including new collations.
Corresponding SHOW commands also display full collation names
in collation related columns:
SHOW CREATE TABLE t1;
SHOW CREATE DATABASE db1;
SHOW TABLE STATUS;
SHOW CREATE FUNCTION f1;
SHOW CREATE PROCEDURE p1;
SHOW CREATE EVENT ev1;
SHOW CREATE TRIGGER tr1;
SHOW CREATE VIEW;
These INFORMATION_SCHEMA queries and SHOW statements may change in
the future, to display show collation names.