1
0
mirror of https://github.com/mariadb-corporation/mariadb-connector-c.git synced 2025-08-05 15:55:58 +03:00
Files
mariadb-connector-c/libmariadb/ma_decimal.c
Marko Mäkelä 238cec4e2a Fix clang -Wempty-body
Fixes up 4dca917b7e
2023-05-29 08:30:01 +03:00

480 lines
16 KiB
C

/* Copyright (C) 2004 Sergei Golubchik
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not see <http://www.gnu.org/licenses>
or write to the Free Software Foundation, Inc.,
51 Franklin St., Fifth Floor, Boston, MA 02110, USA
*/
/*
=======================================================================
NOTE: this library implements SQL standard "exact numeric" type
and is not at all generic, but rather intentinally crippled to
follow the standard :)
=======================================================================
Quoting the standard
(SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
4.4.2 Characteristics of numbers, page 27:
An exact numeric type has a precision P and a scale S. P is a positive
integer that determines the number of significant digits in a
particular radix R, where R is either 2 or 10. S is a non-negative
integer. Every value of an exact numeric type of scale S is of the
form n*10^{-S}, where n is an integer such that ?-R^P <= n <= R^P.
[...]
If an assignment of some number would result in a loss of its most
significant digit, an exception condition is raised. If least
significant digits are lost, implementation-defined rounding or
truncating occurs, with no exception condition being raised.
[...]
Whenever an exact or approximate numeric value is assigned to an exact
numeric value site, an approximation of its value that preserves
leading significant digits after rounding or truncating is represented
in the declared type of the target. The value is converted to have the
precision and scale of the target. The choice of whether to truncate
or round is implementation-defined.
[...]
All numeric values between the smallest and the largest value,
inclusive, in a given exact numeric type have an approximation
obtained by rounding or truncation for that type; it is
implementation-defined which other numeric values have such
approximations.
5.3 <literal>, page 143
<exact numeric literal> ::=
<unsigned integer> [ <period> [ <unsigned integer> ] ]
| <period> <unsigned integer>
6.1 <data type>, page 165:
19) The <scale> of an <exact numeric type> shall not be greater than
the <precision> of the <exact numeric type>.
20) For the <exact numeric type>s DECIMAL and NUMERIC:
a) The maximum value of <precision> is implementation-defined.
<precision> shall not be greater than this value.
b) The maximum value of <scale> is implementation-defined. <scale>
shall not be greater than this maximum value.
21) NUMERIC specifies the data type exact numeric, with the decimal
precision and scale specified by the <precision> and <scale>.
22) DECIMAL specifies the data type exact numeric, with the decimal
scale specified by the <scale> and the implementation-defined
decimal precision equal to or greater than the value of the
specified <precision>.
6.26 <numeric value expression>, page 241:
1) If the declared type of both operands of a dyadic arithmetic
operator is exact numeric, then the declared type of the result is
an implementation-defined exact numeric type, with precision and
scale determined as follows:
a) Let S1 and S2 be the scale of the first and second operands
respectively.
b) The precision of the result of addition and subtraction is
implementation-defined, and the scale is the maximum of S1 and S2.
c) The precision of the result of multiplication is
implementation-defined, and the scale is S1 + S2.
d) The precision and scale of the result of division are
implementation-defined.
*/
#include <ma_global.h>
#include <ma_sys.h> /* for my_alloca */
#include <ma_decimal.h>
#include <mysql.h>
#include <mariadb_rpl.h>
#include <string.h>
#ifdef WIN32
#include <malloc.h>
#endif
typedef decimal_digit dec1;
typedef longlong dec2;
#define unlikely(A) (A)
#define DIG_PER_DEC1 9
#define DIG_MASK 100000000
#define DIG_BASE 1000000000
#define DIG_BASE2 LL(1000000000000000000)
#define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1)
static const dec1 powers10[DIG_PER_DEC1+1]={
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
#define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \
(d)->buf[(d)->len-1] | 1))
#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
do \
{ \
if (unlikely(intg1+frac1 > (len))) \
{ \
if (unlikely(intg1 > (len))) \
{ \
intg1=(len); \
frac1=0; \
error=E_DEC_OVERFLOW; \
} \
else \
{ \
frac1=(len)-intg1; \
error=E_DEC_TRUNCATED; \
} \
} \
else \
error=E_DEC_OK; \
} while(0)
#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
do \
{ \
dec1 a=(from1)+(from2)+(carry); \
if (((carry)= a >= DIG_BASE)) /* no division here! */ \
a-=DIG_BASE; \
(to)=a; \
} while(0)
#define ADD2(to, from1, from2, carry) \
do \
{ \
dec1 a=(from1)+(from2)+(carry); \
if (((carry)= a >= DIG_BASE)) \
a-=DIG_BASE; \
if (unlikely(a >= DIG_BASE)) \
{ \
a-=DIG_BASE; \
carry++; \
} \
(to)=a; \
} while(0)
#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
do \
{ \
dec1 a=(from1)-(from2)-(carry); \
if (((carry)= a < 0)) \
a+=DIG_BASE; \
(to)=a; \
} while(0)
#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
do \
{ \
dec1 a=(from1)-(from2)-(carry); \
if (((carry)= a < 0)) \
a+=DIG_BASE; \
if (unlikely(a < 0)) \
{ \
a+=DIG_BASE; \
carry++; \
} \
(to)=a; \
} while(0)
/*
Convert decimal to its printable string representation
SYNOPSIS
decimal2string()
from - value to convert
to - points to buffer where string representation should be stored
*to_len - in: size of to buffer
out: length of the actually written string
RETURN VALUE
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
*/
int decimal2string(decimal *from, char *to, int *to_len)
{
int len, intg=from->intg, frac=from->frac, i;
int error=E_DEC_OK;
char *s=to;
dec1 *buf, *buf0=from->buf, tmp;
DBUG_ASSERT(*to_len >= 2+from->sign);
/* removing leading zeroes */
i=((intg-1) % DIG_PER_DEC1)+1;
while (intg > 0 && *buf0 == 0)
{
intg-=i;
i=DIG_PER_DEC1;
buf0++;
}
if (intg > 0)
{
for (i=(intg-1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) {}
DBUG_ASSERT(intg > 0);
}
else
intg=0;
if (unlikely(intg+frac==0))
{
intg=1;
tmp=0;
buf0=&tmp;
}
len= from->sign + intg + test(frac) + frac;
if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
{
int i=len-*to_len;
error= (frac && i <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
if (frac && i >= frac + 1) i--;
if (i > frac)
{
intg-= i-frac;
frac= 0;
}
else
frac-=i;
len= from->sign + intg + test(frac) + frac;
}
*to_len=len;
s[len]=0;
if (from->sign)
*s++='-';
if (frac)
{
char *s1=s+intg;
buf=buf0+ROUND_UP(intg);
*s1++='.';
for (; frac>0; frac-=DIG_PER_DEC1)
{
dec1 x=*buf++;
for (i=min(frac, DIG_PER_DEC1); i; i--)
{
dec1 y=x/DIG_MASK;
*s1++='0'+(uchar)y;
x-=y*DIG_MASK;
x*=10;
}
}
}
s+=intg;
for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
{
dec1 x=*--buf;
for (i=min(intg, DIG_PER_DEC1); i; i--)
{
dec1 y=x/10;
*--s='0'+(uchar)(x-y*10);
x=y;
}
}
return error;
}
/*
Convert string to decimal
SYNOPSIS
str2decl()
from - value to convert
to - decimal where where the result will be stored
to->buf and to->len must be set.
end - if not NULL, *end will be set to the char where
conversion ended
fixed - use to->intg, to->frac as limits for input number
NOTE
to->intg and to->frac can be modified even when fixed=1
(but only decreased, in this case)
RETURN VALUE
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
*/
/*
Convert decimal to its binary fixed-length representation
two representations of the same length can be compared with memcmp
with the correct -1/0/+1 result
SYNOPSIS
decimal2bin()
from - value to convert
to - points to buffer where string representation should be stored
precision/scale - see decimal_bin_size() below
NOTE
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
RETURN VALUE
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
*/
/*
Restores decimal from its binary fixed-length representation
SYNOPSIS
bin2decimal()
from - value to convert
to - result
precision/scale - see decimal_bin_size() below
NOTE
see decimal2bin()
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
RETURN VALUE
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
*/
int bin2decimal(const char *from, decimal *to, int precision, int scale)
{
int error=E_DEC_OK,
intg= precision - scale,
intg0= intg / DIG_PER_DEC1,
frac0= scale / DIG_PER_DEC1,
intg0x= intg - intg0 * DIG_PER_DEC1,
frac0x= scale - frac0*DIG_PER_DEC1,
intg1= intg0 + (intg0x > 0),
frac1= frac0 + (frac0x > 0),
tmp_size= decimal_bin_size(precision, scale);
char *tmp;
dec1 *buf= to->buf,
mask=(*from & 0x80) ? 0 : -1;
char *stop;
/* Initial implementation from Sergei modified "from" buffer, (which errored
in binlog api when verifying checksum), so we declare from as read only and use
a stack buffer instead */
tmp= (char *)alloca(tmp_size);
memcpy(tmp, from, tmp_size);
*tmp^= 0x80; /* remove sign bit */
from= tmp;
sanity(to);
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
if (unlikely(error))
{
if (intg1 < intg0+(intg0x>0))
{
from+= dig2bytes[intg0x] + sizeof(dec1)*(intg0 - intg1);
frac0= frac0x= intg0x= 0;
intg0= intg1;
}
else
{
frac0x= 0;
frac0= frac1;
}
}
to->sign= (mask != 0);
to->intg= intg0 * DIG_PER_DEC1 + intg0x;
to->frac= frac0 * DIG_PER_DEC1 + frac0x;
if (intg0x)
{
int i= dig2bytes[intg0x];
dec1 x= 0;
switch (i)
{
case 1: x=myisam_sint1korr(from); break;
case 2: x=myisam_sint2korr(from); break;
case 3: x=myisam_sint3korr(from); break;
case 4: x=myisam_sint4korr(from); break;
default: DBUG_ASSERT(0); x= 0;
}
from+=i;
*buf=x ^ mask;
if (buf > to->buf || *buf != 0)
buf++;
else
to->intg-=intg0x;
}
for (stop=(char *)from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
{
DBUG_ASSERT(sizeof(dec1) == 4);
*buf=myisam_sint4korr(from) ^ mask;
if (buf > to->buf || *buf != 0)
buf++;
else
to->intg-=DIG_PER_DEC1;
}
DBUG_ASSERT(to->intg >=0);
for (stop=(char *)from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
{
DBUG_ASSERT(sizeof(dec1) == 4);
*buf=myisam_sint4korr(from) ^ mask;
buf++;
}
if (frac0x)
{
int i=dig2bytes[frac0x];
dec1 x= 0;
switch (i)
{
case 1: x=myisam_sint1korr(from); break;
case 2: x=myisam_sint2korr(from); break;
case 3: x=myisam_sint3korr(from); break;
case 4: x=myisam_sint4korr(from); break;
default: DBUG_ASSERT(0); x= 0;
}
*buf= (x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
buf++;
}
return error;
}
/*
Returns the size of array to hold a decimal with given precision and scale
RETURN VALUE
size in dec1
(multiply by sizeof(dec1) to get the size if bytes)
*/
int decimal_size(int precision, int scale)
{
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
return ROUND_UP(precision-scale)+ROUND_UP(scale);
}
/*
Returns the size of array to hold a binary representation of a decimal
RETURN VALUE
size in bytes
*/
int decimal_bin_size(int precision, int scale)
{
int intg=precision-scale,
intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
return intg0*sizeof(dec1)+dig2bytes[intg0x]+
frac0*sizeof(dec1)+dig2bytes[frac0x];
}