/* Copyright (C) 2004 Sergei Golubchik This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not see or write to the Free Software Foundation, Inc., 51 Franklin St., Fifth Floor, Boston, MA 02110, USA */ /* ======================================================================= NOTE: this library implements SQL standard "exact numeric" type and is not at all generic, but rather intentinally crippled to follow the standard :) ======================================================================= Quoting the standard (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) 4.4.2 Characteristics of numbers, page 27: An exact numeric type has a precision P and a scale S. P is a positive integer that determines the number of significant digits in a particular radix R, where R is either 2 or 10. S is a non-negative integer. Every value of an exact numeric type of scale S is of the form n*10^{-S}, where n is an integer such that ?-R^P <= n <= R^P. [...] If an assignment of some number would result in a loss of its most significant digit, an exception condition is raised. If least significant digits are lost, implementation-defined rounding or truncating occurs, with no exception condition being raised. [...] Whenever an exact or approximate numeric value is assigned to an exact numeric value site, an approximation of its value that preserves leading significant digits after rounding or truncating is represented in the declared type of the target. The value is converted to have the precision and scale of the target. The choice of whether to truncate or round is implementation-defined. [...] All numeric values between the smallest and the largest value, inclusive, in a given exact numeric type have an approximation obtained by rounding or truncation for that type; it is implementation-defined which other numeric values have such approximations. 5.3 , page 143 ::= [ [ ] ] | 6.1 , page 165: 19) The of an shall not be greater than the of the . 20) For the s DECIMAL and NUMERIC: a) The maximum value of is implementation-defined. shall not be greater than this value. b) The maximum value of is implementation-defined. shall not be greater than this maximum value. 21) NUMERIC specifies the data type exact numeric, with the decimal precision and scale specified by the and . 22) DECIMAL specifies the data type exact numeric, with the decimal scale specified by the and the implementation-defined decimal precision equal to or greater than the value of the specified . 6.26 , page 241: 1) If the declared type of both operands of a dyadic arithmetic operator is exact numeric, then the declared type of the result is an implementation-defined exact numeric type, with precision and scale determined as follows: a) Let S1 and S2 be the scale of the first and second operands respectively. b) The precision of the result of addition and subtraction is implementation-defined, and the scale is the maximum of S1 and S2. c) The precision of the result of multiplication is implementation-defined, and the scale is S1 + S2. d) The precision and scale of the result of division are implementation-defined. */ #include #include /* for my_alloca */ #include #include #include #include #ifdef WIN32 #include #endif typedef decimal_digit dec1; typedef longlong dec2; #define unlikely(A) (A) #define DIG_PER_DEC1 9 #define DIG_MASK 100000000 #define DIG_BASE 1000000000 #define DIG_BASE2 LL(1000000000000000000) #define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1) static const dec1 powers10[DIG_PER_DEC1+1]={ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4}; #define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \ (d)->buf[(d)->len-1] | 1)) #define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ do \ { \ if (unlikely(intg1+frac1 > (len))) \ { \ if (unlikely(intg1 > (len))) \ { \ intg1=(len); \ frac1=0; \ error=E_DEC_OVERFLOW; \ } \ else \ { \ frac1=(len)-intg1; \ error=E_DEC_TRUNCATED; \ } \ } \ else \ error=E_DEC_OK; \ } while(0) #define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ do \ { \ dec1 a=(from1)+(from2)+(carry); \ if (((carry)= a >= DIG_BASE)) /* no division here! */ \ a-=DIG_BASE; \ (to)=a; \ } while(0) #define ADD2(to, from1, from2, carry) \ do \ { \ dec1 a=(from1)+(from2)+(carry); \ if (((carry)= a >= DIG_BASE)) \ a-=DIG_BASE; \ if (unlikely(a >= DIG_BASE)) \ { \ a-=DIG_BASE; \ carry++; \ } \ (to)=a; \ } while(0) #define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ do \ { \ dec1 a=(from1)-(from2)-(carry); \ if (((carry)= a < 0)) \ a+=DIG_BASE; \ (to)=a; \ } while(0) #define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ do \ { \ dec1 a=(from1)-(from2)-(carry); \ if (((carry)= a < 0)) \ a+=DIG_BASE; \ if (unlikely(a < 0)) \ { \ a+=DIG_BASE; \ carry++; \ } \ (to)=a; \ } while(0) /* Convert decimal to its printable string representation SYNOPSIS decimal2string() from - value to convert to - points to buffer where string representation should be stored *to_len - in: size of to buffer out: length of the actually written string RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int decimal2string(decimal *from, char *to, int *to_len) { int len, intg=from->intg, frac=from->frac, i; int error=E_DEC_OK; char *s=to; dec1 *buf, *buf0=from->buf, tmp; DBUG_ASSERT(*to_len >= 2+from->sign); /* removing leading zeroes */ i=((intg-1) % DIG_PER_DEC1)+1; while (intg > 0 && *buf0 == 0) { intg-=i; i=DIG_PER_DEC1; buf0++; } if (intg > 0) { for (i=(intg-1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) {} DBUG_ASSERT(intg > 0); } else intg=0; if (unlikely(intg+frac==0)) { intg=1; tmp=0; buf0=&tmp; } len= from->sign + intg + test(frac) + frac; if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ { int i=len-*to_len; error= (frac && i <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; if (frac && i >= frac + 1) i--; if (i > frac) { intg-= i-frac; frac= 0; } else frac-=i; len= from->sign + intg + test(frac) + frac; } *to_len=len; s[len]=0; if (from->sign) *s++='-'; if (frac) { char *s1=s+intg; buf=buf0+ROUND_UP(intg); *s1++='.'; for (; frac>0; frac-=DIG_PER_DEC1) { dec1 x=*buf++; for (i=min(frac, DIG_PER_DEC1); i; i--) { dec1 y=x/DIG_MASK; *s1++='0'+(uchar)y; x-=y*DIG_MASK; x*=10; } } } s+=intg; for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) { dec1 x=*--buf; for (i=min(intg, DIG_PER_DEC1); i; i--) { dec1 y=x/10; *--s='0'+(uchar)(x-y*10); x=y; } } return error; } /* Convert string to decimal SYNOPSIS str2decl() from - value to convert to - decimal where where the result will be stored to->buf and to->len must be set. end - if not NULL, *end will be set to the char where conversion ended fixed - use to->intg, to->frac as limits for input number NOTE to->intg and to->frac can be modified even when fixed=1 (but only decreased, in this case) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM */ /* Convert decimal to its binary fixed-length representation two representations of the same length can be compared with memcmp with the correct -1/0/+1 result SYNOPSIS decimal2bin() from - value to convert to - points to buffer where string representation should be stored precision/scale - see decimal_bin_size() below NOTE the buffer is assumed to be of the size decimal_bin_size(precision, scale) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ /* Restores decimal from its binary fixed-length representation SYNOPSIS bin2decimal() from - value to convert to - result precision/scale - see decimal_bin_size() below NOTE see decimal2bin() the buffer is assumed to be of the size decimal_bin_size(precision, scale) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int bin2decimal(const char *from, decimal *to, int precision, int scale) { int error=E_DEC_OK, intg= precision - scale, intg0= intg / DIG_PER_DEC1, frac0= scale / DIG_PER_DEC1, intg0x= intg - intg0 * DIG_PER_DEC1, frac0x= scale - frac0*DIG_PER_DEC1, intg1= intg0 + (intg0x > 0), frac1= frac0 + (frac0x > 0), tmp_size= decimal_bin_size(precision, scale); char *tmp; dec1 *buf= to->buf, mask=(*from & 0x80) ? 0 : -1; char *stop; /* Initial implementation from Sergei modified "from" buffer, (which errored in binlog api when verifying checksum), so we declare from as read only and use a stack buffer instead */ tmp= (char *)alloca(tmp_size); memcpy(tmp, from, tmp_size); *tmp^= 0x80; /* remove sign bit */ from= tmp; sanity(to); FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); if (unlikely(error)) { if (intg1 < intg0+(intg0x>0)) { from+= dig2bytes[intg0x] + sizeof(dec1)*(intg0 - intg1); frac0= frac0x= intg0x= 0; intg0= intg1; } else { frac0x= 0; frac0= frac1; } } to->sign= (mask != 0); to->intg= intg0 * DIG_PER_DEC1 + intg0x; to->frac= frac0 * DIG_PER_DEC1 + frac0x; if (intg0x) { int i= dig2bytes[intg0x]; dec1 x= 0; switch (i) { case 1: x=myisam_sint1korr(from); break; case 2: x=myisam_sint2korr(from); break; case 3: x=myisam_sint3korr(from); break; case 4: x=myisam_sint4korr(from); break; default: DBUG_ASSERT(0); x= 0; } from+=i; *buf=x ^ mask; if (buf > to->buf || *buf != 0) buf++; else to->intg-=intg0x; } for (stop=(char *)from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) { DBUG_ASSERT(sizeof(dec1) == 4); *buf=myisam_sint4korr(from) ^ mask; if (buf > to->buf || *buf != 0) buf++; else to->intg-=DIG_PER_DEC1; } DBUG_ASSERT(to->intg >=0); for (stop=(char *)from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) { DBUG_ASSERT(sizeof(dec1) == 4); *buf=myisam_sint4korr(from) ^ mask; buf++; } if (frac0x) { int i=dig2bytes[frac0x]; dec1 x= 0; switch (i) { case 1: x=myisam_sint1korr(from); break; case 2: x=myisam_sint2korr(from); break; case 3: x=myisam_sint3korr(from); break; case 4: x=myisam_sint4korr(from); break; default: DBUG_ASSERT(0); x= 0; } *buf= (x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; buf++; } return error; } /* Returns the size of array to hold a decimal with given precision and scale RETURN VALUE size in dec1 (multiply by sizeof(dec1) to get the size if bytes) */ int decimal_size(int precision, int scale) { DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); return ROUND_UP(precision-scale)+ROUND_UP(scale); } /* Returns the size of array to hold a binary representation of a decimal RETURN VALUE size in bytes */ int decimal_bin_size(int precision, int scale) { int intg=precision-scale, intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); return intg0*sizeof(dec1)+dig2bytes[intg0x]+ frac0*sizeof(dec1)+dig2bytes[frac0x]; }