1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00
esp8266/cores/esp8266/HardwareSerial.cpp
2014-12-12 04:41:24 +03:00

344 lines
9.3 KiB
C++

/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "uart_register.h"
#include "user_interface.h"
}
#include "HardwareSerial.h"
typedef void (*uart_rx_handler_t)(char);
uart_t* uart0_init(int baud_rate, uart_rx_handler_t rx_handler);
void uart0_set_baudrate(uart_t* uart, int baud_rate);
int uart0_get_baudrate(uart_t* uart);
void uart0_uninit(uart_t* uart);
void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block on TX fifo
void uart0_wait_for_transmit(uart_t* uart);
void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full
void uart_set_debug(int enabled);
int uart_get_debug();
struct uart_
{
int baud_rate;
uart_rx_handler_t rx_handler;
};
#define UART_TX_FIFO_SIZE 0x7f
void ICACHE_FLASH_ATTR uart0_rx_handler(uart_t* uart)
{
if (READ_PERI_REG(UART_INT_ST(0)) & UART_RXFIFO_FULL_INT_ST)
{
while(true)
{
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if (!rx_count)
break;
for(int cnt = 0; cnt < rx_count; ++cnt)
{
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
(*uart->rx_handler)(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
}
}
void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed)
{
while (true)
{
size_t tx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;
if (tx_count <= (UART_TX_FIFO_SIZE - size_needed))
break;
}
}
void ICACHE_FLASH_ATTR uart0_wait_for_transmit(uart_t* uart)
{
uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE);
}
void ICACHE_FLASH_ATTR uart0_transmit_char(uart_t* uart, char c)
{
WRITE_PERI_REG(UART_FIFO(0), c);
}
void ICACHE_FLASH_ATTR uart0_transmit(uart_t* uart, const char* buf, size_t size)
{
while (size)
{
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size;
uart0_wait_for_tx_fifo(part_size);
for(;part_size;--part_size, ++buf)
WRITE_PERI_REG(UART_FIFO(0), *buf);
}
}
void ICACHE_FLASH_ATTR uart0_flush(uart_t* uart)
{
SET_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
}
void ICACHE_FLASH_ATTR uart0_interrupt_enable(uart_t* uart)
{
WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff);
ETS_UART_INTR_ATTACH(&uart0_rx_handler, uart);
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_ENABLE();
}
void ICACHE_FLASH_ATTR uart0_interrupt_disable(uart_t* uart)
{
SET_PERI_REG_MASK(UART_INT_ENA(0), 0);
ETS_UART_INTR_DISABLE();
}
void ICACHE_FLASH_ATTR uart0_set_baudrate(uart_t* uart, int baud_rate)
{
uart->baud_rate = baud_rate;
uart_div_modify(0, UART_CLK_FREQ / (uart->baud_rate));
}
int ICACHE_FLASH_ATTR uart0_get_baudrate(uart_t* uart)
{
return uart->baud_rate;
}
uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate, uart_rx_handler_t rx_handler)
{
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uart->rx_handler = rx_handler;
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
uart0_set_baudrate(uart, baudrate);
WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1
uart0_flush(uart);
uart0_interrupt_enable(uart);
WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S));
return uart;
}
void ICACHE_FLASH_ATTR uart0_uninit(uart_t* uart)
{
uart0_interrupt_disable(uart);
// TODO: revert pin functions
os_free(uart);
}
void ICACHE_FLASH_ATTR
uart_ignore_char(char c)
{
}
void ICACHE_FLASH_ATTR
uart_write_char(char c)
{
if (c == '\n')
WRITE_PERI_REG(UART_FIFO(0), '\r');
WRITE_PERI_REG(UART_FIFO(0), c);
}
int s_uart_debug_enabled = 1;
void ICACHE_FLASH_ATTR uart_set_debug(int enabled)
{
s_uart_debug_enabled = enabled;
if (enabled)
ets_install_putc1((void *)&uart_write_char);
else
ets_install_putc1((void *)&uart_ignore_char);
}
int ICACHE_FLASH_ATTR uart_get_debug()
{
return s_uart_debug_enabled;
}
HardwareSerial Serial;
void ICACHE_FLASH_ATTR serial_rx_handler(char c)
{
Serial._rx_complete_irq(c);
}
extern "C" size_t ets_printf(const char*, ...);
ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial() :
_rx_buffer_head(0), _rx_buffer_tail(0),
_tx_buffer_head(0), _tx_buffer_tail(0),
_uart(0)
{
}
void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config)
{
_uart = uart0_init(baud, &serial_rx_handler);
_written = false;
uart_set_debug(0);
}
void ICACHE_FLASH_ATTR HardwareSerial::end()
{
uart0_uninit(_uart);
_uart = 0;
}
int ICACHE_FLASH_ATTR HardwareSerial::available(void)
{
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
}
int ICACHE_FLASH_ATTR HardwareSerial::peek(void)
{
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
return _rx_buffer[_rx_buffer_tail];
}
}
int ICACHE_FLASH_ATTR HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
}
int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void)
{
tx_buffer_index_t head = _tx_buffer_head;
tx_buffer_index_t tail = _tx_buffer_tail;
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}
void ICACHE_FLASH_ATTR HardwareSerial::flush()
{
if (!_written)
return;
}
size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c)
{
uart0_transmit_char(_uart, c);
// // If the buffer and the data register is empty, just write the byte
// // to the data register and be done. This shortcut helps
// // significantly improve the effective datarate at high (>
// // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
// if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
// *_udr = c;
// sbi(*_ucsra, TXC0);
// return 1;
// }
// tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// // If the output buffer is full, there's nothing for it other than to
// // wait for the interrupt handler to empty it a bit
// while (i == _tx_buffer_tail) {
// if (bit_is_clear(SREG, SREG_I)) {
// // Interrupts are disabled, so we'll have to poll the data
// // register empty flag ourselves. If it is set, pretend an
// // interrupt has happened and call the handler to free up
// // space for us.
// if(bit_is_set(*_ucsra, UDRE0))
// _tx_udr_empty_irq();
// } else {
// // nop, the interrupt handler will free up space for us
// }
// }
// _tx_buffer[_tx_buffer_head] = c;
// _tx_buffer_head = i;
// sbi(*_ucsrb, UDRIE0);
_written = true;
return 1;
}
void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c)
{
rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE;
if (i != _rx_buffer_tail) {
_rx_buffer[_rx_buffer_head] = c;
_rx_buffer_head = i;
}
}
// void HardwareSerial::_tx_udr_empty_irq(void)
// {
// // If interrupts are enabled, there must be more data in the output
// // buffer. Send the next byte
// unsigned char c = _tx_buffer[_tx_buffer_tail];
// _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
// *_udr = c;
// // clear the TXC bit -- "can be cleared by writing a one to its bit
// // location". This makes sure flush() won't return until the bytes
// // actually got written
// sbi(*_ucsra, TXC0);
// if (_tx_buffer_head == _tx_buffer_tail) {
// // Buffer empty, so disable interrupts
// cbi(*_ucsrb, UDRIE0);
// }
// }