/* HardwareSerial.cpp - Hardware serial library for Wiring Copyright (c) 2006 Nicholas Zambetti. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Modified 23 November 2006 by David A. Mellis Modified 28 September 2010 by Mark Sproul Modified 14 August 2012 by Alarus Modified 3 December 2013 by Matthijs Kooijman */ #include #include #include #include #include "Arduino.h" extern "C" { #include "osapi.h" #include "ets_sys.h" #include "mem.h" #include "uart_register.h" #include "user_interface.h" } #include "HardwareSerial.h" typedef void (*uart_rx_handler_t)(char); uart_t* uart0_init(int baud_rate, uart_rx_handler_t rx_handler); void uart0_set_baudrate(uart_t* uart, int baud_rate); int uart0_get_baudrate(uart_t* uart); void uart0_uninit(uart_t* uart); void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block on TX fifo void uart0_wait_for_transmit(uart_t* uart); void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full void uart_set_debug(int enabled); int uart_get_debug(); struct uart_ { int baud_rate; uart_rx_handler_t rx_handler; }; #define UART_TX_FIFO_SIZE 0x7f void ICACHE_FLASH_ATTR uart0_rx_handler(uart_t* uart) { if (READ_PERI_REG(UART_INT_ST(0)) & UART_RXFIFO_FULL_INT_ST) { while(true) { int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT; if (!rx_count) break; for(int cnt = 0; cnt < rx_count; ++cnt) { char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF; (*uart->rx_handler)(c); } } WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR); } } void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed) { while (true) { size_t tx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT; if (tx_count <= (UART_TX_FIFO_SIZE - size_needed)) break; } } void ICACHE_FLASH_ATTR uart0_wait_for_transmit(uart_t* uart) { uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE); } void ICACHE_FLASH_ATTR uart0_transmit_char(uart_t* uart, char c) { WRITE_PERI_REG(UART_FIFO(0), c); } void ICACHE_FLASH_ATTR uart0_transmit(uart_t* uart, const char* buf, size_t size) { while (size) { size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size; size -= part_size; uart0_wait_for_tx_fifo(part_size); for(;part_size;--part_size, ++buf) WRITE_PERI_REG(UART_FIFO(0), *buf); } } void ICACHE_FLASH_ATTR uart0_flush(uart_t* uart) { SET_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST); CLEAR_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST); } void ICACHE_FLASH_ATTR uart0_interrupt_enable(uart_t* uart) { WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff); ETS_UART_INTR_ATTACH(&uart0_rx_handler, uart); SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA); ETS_UART_INTR_ENABLE(); } void ICACHE_FLASH_ATTR uart0_interrupt_disable(uart_t* uart) { SET_PERI_REG_MASK(UART_INT_ENA(0), 0); ETS_UART_INTR_DISABLE(); } void ICACHE_FLASH_ATTR uart0_set_baudrate(uart_t* uart, int baud_rate) { uart->baud_rate = baud_rate; uart_div_modify(0, UART_CLK_FREQ / (uart->baud_rate)); } int ICACHE_FLASH_ATTR uart0_get_baudrate(uart_t* uart) { return uart->baud_rate; } uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate, uart_rx_handler_t rx_handler) { uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t)); uart->rx_handler = rx_handler; PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD); uart0_set_baudrate(uart, baudrate); WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1 uart0_flush(uart); uart0_interrupt_enable(uart); WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S)); return uart; } void ICACHE_FLASH_ATTR uart0_uninit(uart_t* uart) { uart0_interrupt_disable(uart); // TODO: revert pin functions os_free(uart); } void ICACHE_FLASH_ATTR uart_ignore_char(char c) { } void ICACHE_FLASH_ATTR uart_write_char(char c) { if (c == '\n') WRITE_PERI_REG(UART_FIFO(0), '\r'); WRITE_PERI_REG(UART_FIFO(0), c); } int s_uart_debug_enabled = 1; void ICACHE_FLASH_ATTR uart_set_debug(int enabled) { s_uart_debug_enabled = enabled; if (enabled) ets_install_putc1((void *)&uart_write_char); else ets_install_putc1((void *)&uart_ignore_char); } int ICACHE_FLASH_ATTR uart_get_debug() { return s_uart_debug_enabled; } HardwareSerial Serial; void ICACHE_FLASH_ATTR serial_rx_handler(char c) { Serial._rx_complete_irq(c); } extern "C" size_t ets_printf(const char*, ...); ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial() : _rx_buffer_head(0), _rx_buffer_tail(0), _tx_buffer_head(0), _tx_buffer_tail(0), _uart(0) { } void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config) { _uart = uart0_init(baud, &serial_rx_handler); _written = false; uart_set_debug(0); } void ICACHE_FLASH_ATTR HardwareSerial::end() { uart0_uninit(_uart); _uart = 0; } int ICACHE_FLASH_ATTR HardwareSerial::available(void) { return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE; } int ICACHE_FLASH_ATTR HardwareSerial::peek(void) { if (_rx_buffer_head == _rx_buffer_tail) { return -1; } else { return _rx_buffer[_rx_buffer_tail]; } } int ICACHE_FLASH_ATTR HardwareSerial::read(void) { // if the head isn't ahead of the tail, we don't have any characters if (_rx_buffer_head == _rx_buffer_tail) { return -1; } else { unsigned char c = _rx_buffer[_rx_buffer_tail]; _rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE; return c; } } int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void) { tx_buffer_index_t head = _tx_buffer_head; tx_buffer_index_t tail = _tx_buffer_tail; if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail; return tail - head - 1; } void ICACHE_FLASH_ATTR HardwareSerial::flush() { if (!_written) return; } size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c) { uart0_transmit_char(_uart, c); // // If the buffer and the data register is empty, just write the byte // // to the data register and be done. This shortcut helps // // significantly improve the effective datarate at high (> // // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown. // if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) { // *_udr = c; // sbi(*_ucsra, TXC0); // return 1; // } // tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE; // // If the output buffer is full, there's nothing for it other than to // // wait for the interrupt handler to empty it a bit // while (i == _tx_buffer_tail) { // if (bit_is_clear(SREG, SREG_I)) { // // Interrupts are disabled, so we'll have to poll the data // // register empty flag ourselves. If it is set, pretend an // // interrupt has happened and call the handler to free up // // space for us. // if(bit_is_set(*_ucsra, UDRE0)) // _tx_udr_empty_irq(); // } else { // // nop, the interrupt handler will free up space for us // } // } // _tx_buffer[_tx_buffer_head] = c; // _tx_buffer_head = i; // sbi(*_ucsrb, UDRIE0); _written = true; return 1; } void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c) { rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE; if (i != _rx_buffer_tail) { _rx_buffer[_rx_buffer_head] = c; _rx_buffer_head = i; } } // void HardwareSerial::_tx_udr_empty_irq(void) // { // // If interrupts are enabled, there must be more data in the output // // buffer. Send the next byte // unsigned char c = _tx_buffer[_tx_buffer_tail]; // _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE; // *_udr = c; // // clear the TXC bit -- "can be cleared by writing a one to its bit // // location". This makes sure flush() won't return until the bytes // // actually got written // sbi(*_ucsra, TXC0); // if (_tx_buffer_head == _tx_buffer_tail) { // // Buffer empty, so disable interrupts // cbi(*_ucsrb, UDRIE0); // } // }