* Reduce the IRAM (and heap) usage of I2C code The I2C code takes a large chunk of IRAM space. Attempt to reduce the size of the routines without impacting functionality. First, remove the `static` classifier on the sda/scl variables in the event handlers. The first instructions in the routines overwrite the last value stored in them, anyway, and their addresses are never taken. * Make most variables ints, not uint8_ts Where it doesn't make a functional difference, make global variables ints and not unit8_t. Bytewide updates and extracts require multiple instructions and hence increase IRAM usage as well as runtime. * Make local flag vars int Sketch uses 270855 bytes (25%) of program storage space. Maximum is 1044464 bytes. Global variables use 27940 bytes (34%) of dynamic memory, leaving 53980 bytes for local variables. Maximum is 81920 bytes. ./xtensa-lx106-elf/bin/xtensa-lx106-elf-objdump -t -j .text1 /tmp/arduino_build_9615/*elf | sort -k1 | head -20 401000cc l F .text1 00000014 twi_delay 401000ec l F .text1 00000020 twi_reply$part$1 4010010c g F .text1 00000035 twi_reply 4010014c g F .text1 00000052 twi_stop 401001a0 g F .text1 0000003b twi_releaseBus 40100204 g F .text1 000001e6 twi_onTwipEvent 40100404 l F .text1 000001f7 onSdaChange 40100608 l F .text1 000002fd onSclChange 40100908 l F .text1 0000003b onTimer * Factor out !scl in onSdaChange If SCL is low then all branches of the case are no-ops, so factor that portion outo to remove some redundant logic in each case. Sketch uses 270843 bytes (25%) of program storage space. Maximum is 1044464 bytes. Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes. 401000cc l F .text1 00000014 twi_delay 401000ec l F .text1 00000020 twi_reply$part$1 4010010c g F .text1 00000035 twi_reply 4010014c g F .text1 00000052 twi_stop 401001a0 g F .text1 0000003b twi_releaseBus 40100204 g F .text1 000001e6 twi_onTwipEvent 40100404 l F .text1 000001e7 onSdaChange 401005f8 l F .text1 000002fd onSclChange 401008f8 l F .text1 0000003b onTimer 0x0000000040107468 _text_end = ABSOLUTE (.) * Make tiny twi_reply inline twi_reply is a chunk of code that can be inlined and actually save IRAM space because certain conditions acan be statically evaluated by gcc. Sketch uses 270823 bytes (25%) of program storage space. Maximum is 1044464 bytes. Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes. 401000cc l F .text1 00000014 twi_delay 401000f4 g F .text1 00000052 twi_stop 40100148 g F .text1 0000003b twi_releaseBus 401001b0 g F .text1 00000206 twi_onTwipEvent 401003d0 l F .text1 000001e7 onSdaChange 401005c4 l F .text1 000002fd onSclChange 401008c4 l F .text1 0000003b onTimer 40100918 g F .text1 00000085 millis 401009a0 g F .text1 0000000f micros 401009b0 g F .text1 00000022 micros64 401009d8 g F .text1 00000013 delayMicroseconds 401009f0 g F .text1 00000034 __digitalRead 401009f0 w F .text1 00000034 digitalRead 40100a3c g F .text1 000000e4 interrupt_handler 40100b20 g F .text1 0000000f vPortFree 0x0000000040107434 _text_end = ABSOLUTE (.) * Inline additional twi_** helper functions Sketch uses 270799 bytes (25%) of program storage space. Maximum is 1044464 bytes. Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes. 401000cc l F .text1 00000014 twi_delay 401000f4 w F .text1 0000003b twi_releaseBus 4010015c g F .text1 00000246 twi_onTwipEvent 401003bc l F .text1 000001e7 onSdaChange 401005b0 l F .text1 000002f9 onSclChange 401008ac l F .text1 0000003b onTimer 0x000000004010741c _text_end = ABSOLUTE (.) * Convert state machine to 1-hot for faster lookup GCC won't use a lookup table for the TWI state machine, so it ends up using a series of straight line compare-jump, compare-jumps to figure out which branch of code to execute for each state. For branches that have multiple states that call them, this can expand to a lot of code. Short-circuit the whole thing by converting the FSM to a 1-hot encoding while executing it, and then just and-ing the 1-hot state with the bitmask of states with the same code. Sketch uses 270719 bytes (25%) of program storage space. Maximum is 1044464 bytes. Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes. 401000cc l F .text1 00000014 twi_delay 401000f4 w F .text1 0000003b twi_releaseBus 4010015c g F .text1 00000246 twi_onTwipEvent 401003c0 l F .text1 000001b1 onSdaChange 40100580 l F .text1 000002da onSclChange 4010085c l F .text1 0000003b onTimer 0x00000000401073cc _text_end = ABSOLUTE (.) Saves 228 bytes of IRAM vs. master, uses 32 additional bytes of heap. * Factor out twi_status setting twi_status is set immediately before an event handler is called, resulting in lots of duplicated code. Set the twi_status flag inside the handler itself. Saves an add'l ~100 bytes of IRAM from prior changes, for a total of ~340 bytes. earle@server:~/Arduino/hardware/esp8266com/esp8266/tools$ ./xtensa-lx106-elf/bin/xtensa-lx106-elf-objdump -t -j .text1 /tmp/arduino_build_849115/*elf | sort -k1 | head -20 401000cc l F .text1 00000014 twi_delay 401000f4 w F .text1 0000003b twi_releaseBus 40100160 g F .text1 0000024e twi_onTwipEvent 401003c8 l F .text1 00000181 onSdaChange 40100558 l F .text1 00000297 onSclChange * Use a struct to hold globals for TWI Thanks to the suggestion from @mhightower83, move all global objects into a struct. This lets a single base pointer register to be used in place of constantly reloading the address of each individual variable. This might be better expressed by moving this to a real C++ implementaion based on a class object (the twi.xxxx would go back to the old xxx-only naming for vars), but there would then need to be API wrappers since the functionality is exposed through a plain C API. Saves 168 additional code bytes, for a grand total of 550 bytes IRAM. earle@server:~/Arduino/hardware/esp8266com/esp8266/tools$ ./xtensa-lx106-elf/bin/xtensa-lx106-elf-objdump -t -j .text1 /tmp/arduino_build_849115/*elf | sort -k1 | head -20 401000cc l F .text1 00000014 twi_delay 401000e8 w F .text1 00000032 twi_releaseBus 40100128 g F .text1 00000217 twi_onTwipEvent 4010034c l F .text1 00000149 onSdaChange 4010049c l F .text1 00000267 onSclChange 40100704 l F .text1 00000028 onTimer * Use enums for states, move one more var to twi struct Make the TWI states enums and not #defines, in the hope that it will allow GCC to more easily flag problems and general good code organization. 401000cc l F .text1 00000014 twi_delay 401000e8 w F .text1 00000032 twi_releaseBus 40100128 g F .text1 00000217 twi_onTwipEvent 4010034c l F .text1 00000149 onSdaChange 4010049c l F .text1 00000257 onSclChange 401006f4 l F .text1 00000028 onTimer Looks like another 16 bytes IRAM saved from the prior push. Sketch uses 267079 bytes (25%) of program storage space. Maximum is 1044464 bytes. Global variables use 27696 bytes (33%) of dynamic memory, leaving 54224 bytes for local variables. Maximum is 81920 bytes. * Save 4 heap bytes by reprdering struct * Convert to C++ class, clean up code Convert the entire file into a C++ class (with C wrappers to preserve the ABI). This allows for setting individual values of the global struct(class) in-situ instead of a cryptic list at the end of the struct definition. It also removes a lot of redundant `twi.`s from most class members. Clean up the code by converting from `#defines` to inline functions, get rid of ternarys-as-ifs, use real enums, etc. For slave_receiver.ino, the numbers are: GIT Master IRAM: 0x723c This push IRAM: 0x6fc0 For a savings of 636 total IRAM bytes (note, there may be a slight flash text increase, but we have 1MB of flash to work with and only 32K of IRAM so the tradeoff makes sense. * Run astyle core.conf, clean up space/tab/etc. Since the C++ version has significant text differences anyway, now is a good time to clean up the mess of spaces, tabs, and differing cuddles. * Add enum use comment, rename twi::delay, fix SDA/SCL_READ bool usage Per review comments * Replace clock stretch repeated code w/inline loop There were multiple places where the code was waiting for a slave to finish stretching the clock. Factor them out to an *inline* function to reduce code smell. * Remove slave code when not using slave mode Add a new twi_setSlaveMode call which actually attached the interrupts to the slave pin change code onSdaChenge/onSclChange. Don't attach interrupts in the main twi_begin. Because slave mode is only useful should a onoReceive or onRequest callback, call twi_setSlaveMode and attach interrupts on the Wire setters. This allows GCC to not link in slave code unless slave mode is used, saving over 1,000 bytes of IRAM in the common, master-only case.
Arduino core for ESP8266 WiFi chip
Quick links
Arduino on ESP8266
This project brings support for the ESP8266 chip to the Arduino environment. It lets you write sketches, using familiar Arduino functions and libraries, and run them directly on ESP8266, with no external microcontroller required.
ESP8266 Arduino core comes with libraries to communicate over WiFi using TCP and UDP, set up HTTP, mDNS, SSDP, and DNS servers, do OTA updates, use a file system in flash memory, and work with SD cards, servos, SPI and I2C peripherals.
Contents
- Installing options:
- Documentation
- Issues and support
- Contributing
- License and credits
Installing with Boards Manager
Starting with 1.6.4, Arduino allows installation of third-party platform packages using Boards Manager. We have packages available for Windows, Mac OS, and Linux (32 and 64 bit).
- Install the current upstream Arduino IDE at the 1.8.7 level or later. The current version is on the Arduino website.
- Start Arduino and open the Preferences window.
- Enter
https://arduino.esp8266.com/stable/package_esp8266com_index.json
into the Additional Board Manager URLs field. You can add multiple URLs, separating them with commas. - Open Boards Manager from Tools > Board menu and install esp8266 platform (and don't forget to select your ESP8266 board from Tools > Board menu after installation).
Latest release 
Boards manager link: https://arduino.esp8266.com/stable/package_esp8266com_index.json
Documentation: https://arduino-esp8266.readthedocs.io/en/2.5.2/
Using git version
Also known as latest git or master branch.
- Install the current upstream Arduino IDE at the 1.8 level or later. The current version is on the Arduino website.
- Follow the instructions in the documentation.
Using PlatformIO
PlatformIO is an open source ecosystem for IoT development with a cross-platform build system, a library manager, and full support for Espressif (ESP8266) development. It works on the following popular host operating systems: macOS, Windows, Linux 32/64, and Linux ARM (like Raspberry Pi, BeagleBone, CubieBoard).
- What is PlatformIO?
- PlatformIO IDE
- PlatformIO Core (command line tool)
- Advanced usage - custom settings, uploading to SPIFFS, Over-the-Air (OTA), staging version
- Integration with Cloud and Standalone IDEs - Cloud9, Codeanywhere, Eclipse Che (Codenvy), Atom, CLion, Eclipse, Emacs, NetBeans, Qt Creator, Sublime Text, VIM, Visual Studio, and VSCode
- Project Examples
Building with make
makeEspArduino is a generic makefile for any ESP8266 Arduino project. Using make instead of the Arduino IDE makes it easier to do automated and production builds.
Documentation
Documentation for latest development version: https://arduino-esp8266.readthedocs.io/en/latest/
Issues and support
ESP8266 Community Forum is a well-established community for questions and answers about Arduino for ESP8266. If you need help, have a "How do I..." type question, have a problem with a 3rd party library not hosted in this repo, or just want to discuss how to approach a problem, please ask there.
If you find the forum useful, please consider supporting it with a donation.
If you encounter an issue which you think is a bug in the ESP8266 Arduino Core or the associated libraries, or if you want to propose an enhancement, you are welcome to submit it here on Github: https://github.com/esp8266/Arduino/issues.
Please provide as much context as possible, as well as the information requested in the issue template:
- ESP8266 Arduino core version which you are using (you can check it in Boards Manager)
- your sketch code; please wrap it into a code block, see Github markdown manual
- when encountering an issue that happens at run time, attach the serial output. Wrap it into a code block, just like the code.
- for issues that happen at compile time, enable verbose compiler output in the IDE preferences, and attach that output (also inside a code block)
- ESP8266 development board model
- IDE settings (board choice, flash size)
- etc
Contributing
For minor fixes of code and documentation, please go ahead and submit a pull request. A gentle introduction to the process can be found here.
Check out the list of issues that are easy to fix — easy issues pending. Working on them is a great way to move the project forward.
Larger changes (rewriting parts of existing code from scratch, adding new functions to the core, adding new libraries) should generally be discussed by opening an issue first.
Feature branches with lots of small commits (especially titled "oops", "fix typo", "forgot to add file", etc.) should be squashed before opening a pull request. At the same time, please refrain from putting multiple unrelated changes into a single pull request.
License and credits
Arduino IDE is developed and maintained by the Arduino team. The IDE is licensed under GPL.
ESP8266 core includes an xtensa gcc toolchain, which is also under GPL.
Esptool written by Christian Klippel is licensed under GPLv2, currently maintained by Ivan Grokhotkov: https://github.com/igrr/esptool-ck.
Espressif SDK included in this build is under Espressif MIT License.
ESP8266 core files are licensed under LGPL.
SPI Flash File System (SPIFFS) written by Peter Andersson is used in this project. It is distributed under the MIT license.
umm_malloc memory management library written by Ralph Hempel is used in this project. It is distributed under the MIT license.
SoftwareSerial library and examples written by Peter Lerup. Distributed under LGPL 2.1.
axTLS library written by Cameron Rich, built from https://github.com/igrr/axtls-8266, is used in this project. It is distributed under BSD license.
BearSSL library written by Thomas Pornin, built from https://github.com/earlephilhower/bearssl-esp8266, is used in this project. It is distributed under the MIT License.
LittleFS library written by ARM Limited and released under the BSD 3-clause license.