1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-07-24 19:42:27 +03:00

Support multiple tone(), analogWrite(), and Servo (#4640)

Remove and rewrite all the parts of the core/libraries using TIMER1
and consolidate into a single, shared waveform generation interrupt
structure.  Tone, analogWrite(), Servo all now just call into this
shared resource to perform their tasks so are all compatible
and can be used simultaneously.

This setup enables multiple tones, analogWrites, servos, and stepper
motors to be controlled with reasonable accuracy.  It uses both TIMER1
and the internal ESP cycle counter to handle timing of waveform edges.
TIMER1 is used in non-reload mode and only edges cause interrupts.  The
interrupt is started and stopped as required, minimizing overhead when
these features are not being used.

A generic "startWaveform(pin, high-US, low-US, runtime-US)" and
"stopWaveform(pin)" allow for further types of interfaces.  Minimum
high or low period is ~1 us.

Add a tone(float) method, useful when working with lower frequencies.

Fixes #4321.  Fixes 4349.
This commit is contained in:
Earle F. Philhower, III
2018-06-07 18:38:58 -07:00
committed by GitHub
parent ea4720b03e
commit ebda795f34
12 changed files with 599 additions and 840 deletions

View File

@ -0,0 +1,129 @@
/*
Servo library using shared TIMER1 infrastructure
Original Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ESP8266)
#include <Arduino.h>
#include <Servo.h>
#include "core_esp8266_waveform.h"
// similiar to map but will have increased accuracy that provides a more
// symetric api (call it and use result to reverse will provide the original value)
int improved_map(int value, int minIn, int maxIn, int minOut, int maxOut)
{
const int rangeIn = maxIn - minIn;
const int rangeOut = maxOut - minOut;
const int deltaIn = value - minIn;
// fixed point math constants to improve accurancy of divide and rounding
const int fixedHalfDecimal = 1;
const int fixedDecimal = fixedHalfDecimal * 2;
return ((deltaIn * rangeOut * fixedDecimal) / (rangeIn) + fixedHalfDecimal) / fixedDecimal + minOut;
}
//-------------------------------------------------------------------
// Servo class methods
Servo::Servo()
{
_attached = false;
_valueUs = DEFAULT_PULSE_WIDTH;
_minUs = MIN_PULSE_WIDTH;
_maxUs = MAX_PULSE_WIDTH;
}
Servo::~Servo() {
detach();
}
uint8_t Servo::attach(int pin)
{
return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, uint16_t minUs, uint16_t maxUs)
{
if (!_attached) {
digitalWrite(pin, LOW);
pinMode(pin, OUTPUT);
_pin = pin;
_attached = true;
}
// keep the min and max within 200-3000 us, these are extreme
// ranges and should support extreme servos while maintaining
// reasonable ranges
_maxUs = max((uint16_t)250, min((uint16_t)3000, maxUs));
_minUs = max((uint16_t)200, min(_maxUs, minUs));
write(_valueUs);
return pin;
}
void Servo::detach()
{
if (_attached) {
stopWaveform(_pin);
_attached = false;
digitalWrite(_pin, LOW);
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH) {
// assumed to be 0-180 degrees servo
value = constrain(value, 0, 180);
// writeMicroseconds will contrain the calculated value for us
// for any user defined min and max, but we must use default min max
value = improved_map(value, 0, 180, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
_valueUs = value;
if (_attached) {
startWaveform(_pin, _valueUs, REFRESH_INTERVAL - _valueUs, 0);
}
}
int Servo::read() // return the value as degrees
{
// read returns the angle for an assumed 0-180, so we calculate using
// the normal min/max constants and not user defined ones
return improved_map(readMicroseconds(), MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, 0, 180);
}
int Servo::readMicroseconds()
{
return _valueUs;
}
bool Servo::attached()
{
return _attached;
}
#endif