1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-06-07 16:23:38 +03:00

Support multiple tone(), analogWrite(), and Servo (#4640)

Remove and rewrite all the parts of the core/libraries using TIMER1
and consolidate into a single, shared waveform generation interrupt
structure.  Tone, analogWrite(), Servo all now just call into this
shared resource to perform their tasks so are all compatible
and can be used simultaneously.

This setup enables multiple tones, analogWrites, servos, and stepper
motors to be controlled with reasonable accuracy.  It uses both TIMER1
and the internal ESP cycle counter to handle timing of waveform edges.
TIMER1 is used in non-reload mode and only edges cause interrupts.  The
interrupt is started and stopped as required, minimizing overhead when
these features are not being used.

A generic "startWaveform(pin, high-US, low-US, runtime-US)" and
"stopWaveform(pin)" allow for further types of interfaces.  Minimum
high or low period is ~1 us.

Add a tone(float) method, useful when working with lower frequencies.

Fixes #4321.  Fixes 4349.
This commit is contained in:
Earle F. Philhower, III 2018-06-07 18:38:58 -07:00 committed by GitHub
parent ea4720b03e
commit ebda795f34
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 599 additions and 840 deletions

View File

@ -279,6 +279,7 @@ unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 100000
unsigned long pulseInLong(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L);
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0);
void tone(uint8_t _pin, double frequency, unsigned long duration = 0);
void noTone(uint8_t _pin);
// WMath prototypes

View File

@ -3,7 +3,7 @@
A Tone Generator Library for the ESP8266
Copyright (c) 2016 Ben Pirt. All rights reserved.
Original Copyright (c) 2016 Ben Pirt. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
@ -22,115 +22,59 @@
*/
#include "Arduino.h"
#include "pins_arduino.h"
#include "core_esp8266_waveform.h"
#define AVAILABLE_TONE_PINS 1
const uint8_t tone_timers[] = { 1 };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255, };
static long toggle_counts[AVAILABLE_TONE_PINS] = { 0, };
#define T1INDEX 0
// Which pins have a tone running on them?
static uint32_t _toneMap = 0;
void t1IntHandler();
static int8_t toneBegin(uint8_t _pin) {
int8_t _index = -1;
// if we're already using the pin, reuse it.
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == _pin) {
return i;
}
static void _startTone(uint8_t _pin, uint32_t high, uint32_t low, unsigned long duration) {
if (_pin > 16) {
return;
}
// search for an unused timer.
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == 255) {
tone_pins[i] = _pin;
_index = i;
break;
}
}
pinMode(_pin, OUTPUT);
return _index;
high = std::max(high, (uint32_t)100);
low = std::max(low, (uint32_t)100);
if (startWaveform(_pin, high, low, (uint32_t) duration * 1000)) {
_toneMap |= 1 << _pin;
}
}
// frequency (in hertz) and duration (in milliseconds).
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration) {
int8_t _index;
_index = toneBegin(_pin);
if (_index >= 0) {
// Set the pinMode as OUTPUT
pinMode(_pin, OUTPUT);
// Alternate handling of zero freqency to avoid divide by zero errors
if (frequency == 0)
{
noTone(_pin);
return;
}
// Calculate the toggle count
if (duration > 0) {
toggle_counts[_index] = 2 * frequency * duration / 1000;
} else {
toggle_counts[_index] = -1;
}
// set up the interrupt frequency
switch (tone_timers[_index]) {
case 0:
// Not currently supported
break;
case 1:
timer1_disable();
timer1_isr_init();
timer1_attachInterrupt(t1IntHandler);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_LOOP);
timer1_write((clockCyclesPerMicrosecond() * 500000) / frequency);
break;
}
if (frequency == 0) {
noTone(_pin);
} else {
uint32_t period = 1000000L / frequency;
uint32_t high = period / 2;
uint32_t low = period - high;
_startTone(_pin, high, low, duration);
}
}
void disableTimer(uint8_t _index) {
tone_pins[_index] = 255;
switch (tone_timers[_index]) {
case 0:
// Not currently supported
break;
case 1:
timer1_disable();
break;
// Separate tone(float) to hopefully not pull in floating point libs unless
// it's called with a float.
void tone(uint8_t _pin, double frequency, unsigned long duration) {
if (frequency < 1.0) { // FP means no exact comparisons
noTone(_pin);
} else {
double period = 1000000.0 / frequency;
uint32_t high = (uint32_t)((period / 2.0) + 0.5);
uint32_t low = (uint32_t)(period + 0.5) - high;
_startTone(_pin, high, low, duration);
}
}
void noTone(uint8_t _pin) {
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == _pin) {
tone_pins[i] = 255;
disableTimer(i);
break;
}
}
digitalWrite(_pin, LOW);
}
ICACHE_RAM_ATTR void t1IntHandler() {
if (toggle_counts[T1INDEX] != 0){
// toggle the pin
digitalWrite(tone_pins[T1INDEX], toggle_counts[T1INDEX] % 2);
toggle_counts[T1INDEX]--;
// handle the case of indefinite duration
if (toggle_counts[T1INDEX] < -2){
toggle_counts[T1INDEX] = -1;
}
}else{
disableTimer(T1INDEX);
digitalWrite(tone_pins[T1INDEX], LOW);
if (_pin > 16) {
return;
}
stopWaveform(_pin);
_toneMap &= ~(1 << _pin);
digitalWrite(_pin, 0);
}

0
cores/esp8266/base64.cpp Executable file → Normal file
View File

0
cores/esp8266/base64.h Executable file → Normal file
View File

View File

@ -0,0 +1,304 @@
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds). TIMER1 is set to 1-shot
mode and is always loaded with the time until the next edge of any live
waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP cycle counter, not the
timer. This allows for removing interrupt jitter and delay as the counter
always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleTime()
cycles, not TIMER1 cycles (which may be 2 CPU clocks @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include "core_esp8266_waveform.h"
// Need speed, not size, here
#pragma GCC optimize ("O3")
// Map the IRQ stuff to standard terminology
#define cli() ets_intr_lock()
#define sei() ets_intr_unlock()
// Maximum delay between IRQs
#define MAXIRQUS (10000)
// If the cycles from now to an event are below this value, perform it anyway since IRQs take longer than this
#define CYCLES_FLUFF (100)
// Macro to get count of predefined array elements
#define countof(a) ((size_t)(sizeof(a)/sizeof(a[0])))
// Set/clear *any* GPIO
#define SetGPIOPin(a) do { if (a < 16) { GPOS |= (1<<a); } else { GP16O |= 1; } } while (0)
#define ClearGPIOPin(a) do { if (a < 16) { GPOC |= (1<<a); } else { GP16O &= ~1; } } while (0)
// Set/clear GPIO 0-15
#define SetGPIO(a) do { GPOS = a; } while (0)
#define ClearGPIO(a) do { GPOC = a; } while (0)
// Waveform generator can create tones, PWM, and servos
typedef struct {
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
uint32_t timeLeftCycles; // For time-limited waveform, how many ESP cycles left
uint16_t gpioMask; // Mask instead of value to speed IRQ loop
uint16_t gpio16Mask; // Mask instead of value to speed IRQ loop
unsigned state : 1; // Current state of this pin
unsigned nextTimeHighCycles : 31; // Copy over low->high to keep smooth waveform
unsigned enabled : 1; // Is this GPIO generating a waveform?
unsigned nextTimeLowCycles : 31; // Copy over high->low to keep smooth waveform
} Waveform;
// These can be accessed in interrupts, so ensure to bracket access with SEI/CLI
static Waveform waveform[] = {
{0, 0, 1<<0, 0, 0, 0, 0, 0}, // GPIO0
{0, 0, 1<<1, 0, 0, 0, 0, 0}, // GPIO1
{0, 0, 1<<2, 0, 0, 0, 0, 0},
{0, 0, 1<<3, 0, 0, 0, 0, 0},
{0, 0, 1<<4, 0, 0, 0, 0, 0},
{0, 0, 1<<5, 0, 0, 0, 0, 0},
// GPIOS 6-11 not allowed, used for flash
{0, 0, 1<<12, 0, 0, 0, 0, 0},
{0, 0, 1<<13, 0, 0, 0, 0, 0},
{0, 0, 1<<14, 0, 0, 0, 0, 0},
{0, 0, 1<<15, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0} // GPIO16
};
static uint32_t (*timer1CB)() = NULL;;
// Helper functions
static inline ICACHE_RAM_ATTR uint32_t MicrosecondsToCycles(uint32_t microseconds) {
return clockCyclesPerMicrosecond() * microseconds;
}
static inline ICACHE_RAM_ATTR uint32_t min_u32(uint32_t a, uint32_t b) {
if (a < b) {
return a;
}
return b;
}
static inline ICACHE_RAM_ATTR uint32_t min_s32(int32_t a, int32_t b) {
if (a < b) {
return a;
}
return b;
}
static inline ICACHE_RAM_ATTR void ReloadTimer(uint32_t a) {
// Below a threshold you actually miss the edge IRQ, so ensure enough time
if (a > 32) {
timer1_write(a);
} else {
timer1_write(32);
}
}
static inline ICACHE_RAM_ATTR uint32_t GetCycleCount() {
uint32_t ccount;
__asm__ __volatile__("esync; rsr %0,ccount":"=a"(ccount));
return ccount;
}
// Interrupt on/off control
static ICACHE_RAM_ATTR void timer1Interrupt();
static uint8_t timerRunning = false;
static uint32_t lastCycleCount = 0; // Last ESP cycle counter on running the interrupt routine
static void initTimer() {
timer1_disable();
timer1_isr_init();
timer1_attachInterrupt(timer1Interrupt);
lastCycleCount = GetCycleCount();
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
timerRunning = true;
}
static void deinitTimer() {
timer1_attachInterrupt(NULL);
timer1_disable();
timer1_isr_init();
timerRunning = false;
}
// Set a callback. Pass in NULL to stop it
void setTimer1Callback(uint32_t (*fn)()) {
timer1CB = fn;
if (!timerRunning && fn) {
initTimer();
} else if (timerRunning && !fn) {
int cnt = 0;
for (size_t i = 0; i < countof(waveform); i++) {
cnt += waveform[i].enabled ? 1 : 0;
}
if (!cnt) {
deinitTimer();
}
}
ReloadTimer(MicrosecondsToCycles(1)); // Cause an interrupt post-haste
}
// Start up a waveform on a pin, or change the current one. Will change to the new
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
// first, then it will immediately begin.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS) {
Waveform *wave = NULL;
for (size_t i = 0; i < countof(waveform); i++) {
if (((pin == 16) && waveform[i].gpio16Mask==1) || ((pin != 16) && (waveform[i].gpioMask == 1<<pin))) {
wave = (Waveform*) & (waveform[i]);
break;
}
}
if (!wave) {
return false;
}
wave->nextTimeHighCycles = MicrosecondsToCycles(timeHighUS) - 70; // Take out some time for IRQ codepath
wave->nextTimeLowCycles = MicrosecondsToCycles(timeLowUS) - 70; // Take out some time for IRQ codepath
wave->timeLeftCycles = MicrosecondsToCycles(runTimeUS);
if (!wave->enabled) {
wave->state = 0;
// Actually set the pin high or low in the IRQ service to guarantee times
wave->nextServiceCycle = GetCycleCount() + MicrosecondsToCycles(1);
wave->enabled = 1;
if (!timerRunning) {
initTimer();
}
ReloadTimer(MicrosecondsToCycles(1)); // Cause an interrupt post-haste
}
return true;
}
// Stops a waveform on a pin
int stopWaveform(uint8_t pin) {
for (size_t i = 0; i < countof(waveform); i++) {
if (((pin == 16) && waveform[i].gpio16Mask) || ((pin != 16) && (waveform[i].gpioMask == 1<<pin))) {
waveform[i].enabled = 0;
int cnt = timer1CB?1:0;
for (size_t i = 0; i < countof(waveform); i++) {
cnt += waveform[i].enabled ? 1 : 0;
}
if (!cnt) {
deinitTimer();
}
return true;
}
}
cli();
return false;
}
static ICACHE_RAM_ATTR void timer1Interrupt() {
uint32_t nextEventCycles;
#if F_CPU == 160000000
uint8_t cnt = 20;
#else
uint8_t cnt = 10;
#endif
do {
nextEventCycles = MicrosecondsToCycles(MAXIRQUS);
for (size_t i = 0; i < countof(waveform); i++) {
Waveform *wave = &waveform[i];
uint32_t now;
// If it's not on, ignore!
if (!wave->enabled) {
continue;
}
// Check for toggles
now = GetCycleCount();
if (now >= wave->nextServiceCycle) {
wave->state = !wave->state;
if (wave->state) {
SetGPIO(wave->gpioMask);
if (wave->gpio16Mask) {
GP16O |= wave->gpio16Mask; // GPIO16 write slow as it's RMW
}
wave->nextServiceCycle = now + wave->nextTimeHighCycles;
nextEventCycles = min_u32(nextEventCycles, wave->nextTimeHighCycles);
} else {
ClearGPIO(wave->gpioMask);
if (wave->gpio16Mask) {
GP16O &= ~wave->gpio16Mask;
}
wave->nextServiceCycle = now + wave->nextTimeLowCycles;
nextEventCycles = min_u32(nextEventCycles, wave->nextTimeLowCycles);
}
} else {
uint32_t deltaCycles = wave->nextServiceCycle - now;
nextEventCycles = min_u32(nextEventCycles, deltaCycles);
}
}
} while (--cnt && (nextEventCycles < MicrosecondsToCycles(4)));
uint32_t curCycleCount = GetCycleCount();
uint32_t deltaCycles = curCycleCount - lastCycleCount;
lastCycleCount = curCycleCount;
// Check for timed-out waveforms out of the high-frequency toggle loop
for (size_t i = 0; i < countof(waveform); i++) {
Waveform *wave = &waveform[i];
if (wave->timeLeftCycles) {
// Check for unsigned underflow with new > old
if (deltaCycles >= wave->timeLeftCycles) {
// Done, remove!
wave->enabled = false;
ClearGPIO(wave->gpioMask);
GP16O &= ~wave->gpio16Mask;
} else {
uint32_t newTimeLeftCycles = wave->timeLeftCycles - deltaCycles;
wave->timeLeftCycles = newTimeLeftCycles;
}
}
}
if (timer1CB) {
nextEventCycles = min_u32(nextEventCycles, timer1CB());
}
#if F_CPU == 160000000
if (nextEventCycles <= 5 * MicrosecondsToCycles(1)) {
nextEventCycles = MicrosecondsToCycles(1) / 2;
} else {
nextEventCycles -= 5 * MicrosecondsToCycles(1);
}
nextEventCycles = nextEventCycles >> 1;
#else
if (nextEventCycles <= 6 * MicrosecondsToCycles(1)) {
nextEventCycles = MicrosecondsToCycles(1) / 2;
} else {
nextEventCycles -= 6 * MicrosecondsToCycles(1);
}
#endif
ReloadTimer(nextEventCycles);
}

View File

@ -0,0 +1,71 @@
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds). TIMER1 is set to 1-shot
mode and is always loaded with the time until the next edge of any live
waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP cycle counter, not the
timer. This allows for removing interrupt jitter and delay as the counter
always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleTime()
cycles, not TIMER1 cycles (which may be 2 CPU clocks @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#ifndef __ESP8266_WAVEFORM_H
#define __ESP8266_WAVEFORM_H
#ifdef __cplusplus
extern "C" {
#endif
// Start or change a waveform of the specified high and low times on specific pin.
// If runtimeUS > 0 then automatically stop it after that many usecs.
// Returns true or false on success or failure.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS);
// Stop a waveform, if any, on the specified pin.
// Returns true or false on success or failure.
int stopWaveform(uint8_t pin);
// Add a callback function to be called on *EVERY* timer1 trigger. The
// callback returns the number of microseconds until the next desired call.
// However, since it is called every timer1 interrupt, it may be called
// again before this period. It should therefore use the ESP Cycle Counter
// to determine whether or not to perform an operation.
// Pass in NULL to disable the callback and, if no other waveforms being
// generated, stop the timer as well.
// Make sure the CB function has the ICACHE_RAM_ATTR decorator.
void setTimer1Callback(uint32_t (*fn)());
#ifdef __cplusplus
}
#endif
#endif

View File

@ -24,13 +24,12 @@
#include "c_types.h"
#include "eagle_soc.h"
#include "ets_sys.h"
extern void pwm_stop_pin(uint8_t pin);
#include "core_esp8266_waveform.h"
uint8_t esp8266_gpioToFn[16] = {0x34, 0x18, 0x38, 0x14, 0x3C, 0x40, 0x1C, 0x20, 0x24, 0x28, 0x2C, 0x30, 0x04, 0x08, 0x0C, 0x10};
extern void __pinMode(uint8_t pin, uint8_t mode) {
pwm_stop_pin(pin);
stopWaveform(pin);
if(pin < 16){
if(mode == SPECIAL){
GPC(pin) = (GPC(pin) & (0xF << GPCI)); //SOURCE(GPIO) | DRIVER(NORMAL) | INT_TYPE(UNCHANGED) | WAKEUP_ENABLE(DISABLED)
@ -80,7 +79,7 @@ extern void __pinMode(uint8_t pin, uint8_t mode) {
}
extern void ICACHE_RAM_ATTR __digitalWrite(uint8_t pin, uint8_t val) {
pwm_stop_pin(pin);
stopWaveform(pin);
if(pin < 16){
if(val) GPOS = (1 << pin);
else GPOC = (1 << pin);
@ -91,7 +90,7 @@ extern void ICACHE_RAM_ATTR __digitalWrite(uint8_t pin, uint8_t val) {
}
extern int ICACHE_RAM_ATTR __digitalRead(uint8_t pin) {
pwm_stop_pin(pin);
stopWaveform(pin);
if(pin < 16){
return GPIP(pin);
} else if(pin == 16){

View File

@ -1,7 +1,9 @@
/*
pwm.c - analogWrite implementation for esp8266
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
Use the shared TIMER1 utilities to generate PWM signals
Original Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
@ -18,204 +20,58 @@
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "wiring_private.h"
#include "pins_arduino.h"
#include "c_types.h"
#include "eagle_soc.h"
#include "ets_sys.h"
#ifndef F_CPU
#define F_CPU 800000000L
#endif
#include <Arduino.h>
#include "core_esp8266_waveform.h"
struct pwm_isr_table {
uint8_t len;
uint16_t steps[17];
uint32_t masks[17];
};
struct pwm_isr_data {
struct pwm_isr_table tables[2];
uint8_t active;//0 or 1, which table is active in ISR
};
static uint32_t analogMap = 0;
static int32_t analogScale = 255;
static uint16_t analogFreq = 1000;
static struct pwm_isr_data _pwm_isr_data;
uint32_t pwm_mask = 0;
uint16_t pwm_values[17] = {0,};
uint32_t pwm_freq = 1000;
uint32_t pwm_range = PWMRANGE;
uint8_t pwm_steps_changed = 0;
uint32_t pwm_multiplier = 0;
int pwm_sort_array(uint16_t a[], uint16_t al)
{
uint16_t i, j;
for (i = 1; i < al; i++) {
uint16_t tmp = a[i];
for (j = i; j >= 1 && tmp < a[j-1]; j--) {
a[j] = a[j-1];
}
a[j] = tmp;
}
int bl = 1;
for(i = 1; i < al; i++) {
if(a[i] != a[i-1]) {
a[bl++] = a[i];
}
}
return bl;
extern void __analogWriteRange(uint32_t range) {
if (range > 0) {
analogScale = range;
}
}
uint32_t pwm_get_mask(uint16_t value)
{
uint32_t mask = 0;
int i;
for(i=0; i<17; i++) {
if((pwm_mask & (1 << i)) != 0 && pwm_values[i] == value) {
mask |= (1 << i);
}
}
return mask;
extern void __analogWriteFreq(uint32_t freq) {
if (freq < 100) {
analogFreq = 100;
} else if (freq > 40000) {
analogFreq = 40000;
} else {
analogFreq = freq;
}
}
void prep_pwm_steps()
{
if(pwm_mask == 0) {
return;
}
extern void __analogWrite(uint8_t pin, int val) {
if (pin >= 16) {
return;
}
uint32_t analogPeriod = 1000000L / analogFreq;
if (val < 0) {
val = 0;
} else if (val > analogScale) {
val = analogScale;
}
int pwm_temp_steps_len = 0;
uint16_t pwm_temp_steps[17];
uint32_t pwm_temp_masks[17];
uint32_t range = pwm_range;
if((F_CPU / ESP8266_CLOCK) == 1) {
range /= 2;
analogMap &= ~(1 << pin);
uint32_t high = (analogPeriod * val) / analogScale;
uint32_t low = analogPeriod - high;
if (low == 0) {
stopWaveform(pin);
digitalWrite(pin, HIGH);
} else if (high == 0) {
stopWaveform(pin);
digitalWrite(pin, LOW);
} else {
if (startWaveform(pin, high, low, 0)) {
analogMap |= (1 << pin);
}
int i;
for(i=0; i<17; i++) {
if((pwm_mask & (1 << i)) != 0 && pwm_values[i] != 0) {
pwm_temp_steps[pwm_temp_steps_len++] = pwm_values[i];
}
}
pwm_temp_steps[pwm_temp_steps_len++] = range;
pwm_temp_steps_len = pwm_sort_array(pwm_temp_steps, pwm_temp_steps_len) - 1;
for(i=0; i<pwm_temp_steps_len; i++) {
pwm_temp_masks[i] = pwm_get_mask(pwm_temp_steps[i]);
}
for(i=pwm_temp_steps_len; i>0; i--) {
pwm_temp_steps[i] = pwm_temp_steps[i] - pwm_temp_steps[i-1];
}
pwm_steps_changed = 0;
struct pwm_isr_table *table = &(_pwm_isr_data.tables[!_pwm_isr_data.active]);
table->len = pwm_temp_steps_len;
ets_memcpy(table->steps, pwm_temp_steps, (pwm_temp_steps_len + 1) * 2);
ets_memcpy(table->masks, pwm_temp_masks, pwm_temp_steps_len * 4);
pwm_multiplier = ESP8266_CLOCK/(range * pwm_freq);
pwm_steps_changed = 1;
}
}
void ICACHE_RAM_ATTR pwm_timer_isr() //103-138
{
struct pwm_isr_table *table = &(_pwm_isr_data.tables[_pwm_isr_data.active]);
static uint8_t current_step = 0;
TEIE &= ~TEIE1;//14
T1I = 0;//9
if(current_step < table->len) { //20/21
uint32_t mask = table->masks[current_step] & pwm_mask;
if(mask & 0xFFFF) {
GPOC = mask & 0xFFFF; //15/21
}
if(mask & 0x10000) {
GP16O = 0; //6/13
}
current_step++;//1
} else {
current_step = 0;//1
if(pwm_mask == 0) { //12
table->len = 0;
return;
}
if(pwm_mask & 0xFFFF) {
GPOS = pwm_mask & 0xFFFF; //11
}
if(pwm_mask & 0x10000) {
GP16O = 1; //5/13
}
if(pwm_steps_changed) { //12/21
_pwm_isr_data.active = !_pwm_isr_data.active;
table = &(_pwm_isr_data.tables[_pwm_isr_data.active]);
pwm_steps_changed = 0;
}
}
T1L = (table->steps[current_step] * pwm_multiplier);//23
TEIE |= TEIE1;//13
}
void pwm_start_timer()
{
timer1_disable();
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
ETS_FRC_TIMER1_NMI_INTR_ATTACH(pwm_timer_isr);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
timer1_write(1);
}
void ICACHE_RAM_ATTR pwm_stop_pin(uint8_t pin)
{
if(pwm_mask){
pwm_mask &= ~(1 << pin);
if(pwm_mask == 0) {
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
timer1_disable();
timer1_isr_init();
}
}
}
extern void __analogWrite(uint8_t pin, int value)
{
bool start_timer = false;
if(value == 0) {
digitalWrite(pin, LOW);
prep_pwm_steps();
return;
}
if((pwm_mask & (1 << pin)) == 0) {
if(pwm_mask == 0) {
memset(&_pwm_isr_data, 0, sizeof(_pwm_isr_data));
start_timer = true;
}
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
pwm_mask |= (1 << pin);
}
if((F_CPU / ESP8266_CLOCK) == 1) {
value = (value+1) / 2;
}
pwm_values[pin] = value % (pwm_range + 1);
prep_pwm_steps();
if(start_timer) {
pwm_start_timer();
}
}
extern void __analogWriteFreq(uint32_t freq)
{
pwm_freq = freq;
prep_pwm_steps();
}
extern void __analogWriteRange(uint32_t range)
{
pwm_range = range;
prep_pwm_steps();
}
extern void analogWrite(uint8_t pin, int val) __attribute__ ((weak, alias("__analogWrite")));
extern void analogWriteFreq(uint32_t freq) __attribute__ ((weak, alias("__analogWriteFreq")));
extern void analogWriteRange(uint32_t range) __attribute__ ((weak, alias("__analogWriteRange")));
extern void analogWrite(uint8_t pin, int val) __attribute__((weak, alias("__analogWrite")));
extern void analogWriteFreq(uint32_t freq) __attribute__((weak, alias("__analogWriteFreq")));
extern void analogWriteRange(uint32_t range) __attribute__((weak, alias("__analogWriteRange")));

View File

@ -0,0 +1,129 @@
/*
Servo library using shared TIMER1 infrastructure
Original Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ESP8266)
#include <Arduino.h>
#include <Servo.h>
#include "core_esp8266_waveform.h"
// similiar to map but will have increased accuracy that provides a more
// symetric api (call it and use result to reverse will provide the original value)
int improved_map(int value, int minIn, int maxIn, int minOut, int maxOut)
{
const int rangeIn = maxIn - minIn;
const int rangeOut = maxOut - minOut;
const int deltaIn = value - minIn;
// fixed point math constants to improve accurancy of divide and rounding
const int fixedHalfDecimal = 1;
const int fixedDecimal = fixedHalfDecimal * 2;
return ((deltaIn * rangeOut * fixedDecimal) / (rangeIn) + fixedHalfDecimal) / fixedDecimal + minOut;
}
//-------------------------------------------------------------------
// Servo class methods
Servo::Servo()
{
_attached = false;
_valueUs = DEFAULT_PULSE_WIDTH;
_minUs = MIN_PULSE_WIDTH;
_maxUs = MAX_PULSE_WIDTH;
}
Servo::~Servo() {
detach();
}
uint8_t Servo::attach(int pin)
{
return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, uint16_t minUs, uint16_t maxUs)
{
if (!_attached) {
digitalWrite(pin, LOW);
pinMode(pin, OUTPUT);
_pin = pin;
_attached = true;
}
// keep the min and max within 200-3000 us, these are extreme
// ranges and should support extreme servos while maintaining
// reasonable ranges
_maxUs = max((uint16_t)250, min((uint16_t)3000, maxUs));
_minUs = max((uint16_t)200, min(_maxUs, minUs));
write(_valueUs);
return pin;
}
void Servo::detach()
{
if (_attached) {
stopWaveform(_pin);
_attached = false;
digitalWrite(_pin, LOW);
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH) {
// assumed to be 0-180 degrees servo
value = constrain(value, 0, 180);
// writeMicroseconds will contrain the calculated value for us
// for any user defined min and max, but we must use default min max
value = improved_map(value, 0, 180, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
_valueUs = value;
if (_attached) {
startWaveform(_pin, _valueUs, REFRESH_INTERVAL - _valueUs, 0);
}
}
int Servo::read() // return the value as degrees
{
// read returns the angle for an assumed 0-180, so we calculate using
// the normal min/max constants and not user defined ones
return improved_map(readMicroseconds(), MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, 0, 180);
}
int Servo::readMicroseconds()
{
return _valueUs;
}
bool Servo::attached()
{
return _attached;
}
#endif

View File

@ -1,6 +1,6 @@
/*
Servo.h - Interrupt driven Servo library for Esp8266 using timers
Copyright (c) 2015 Michael C. Miller. All right reserved.
Original Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@ -23,13 +23,6 @@
// The servos are pulsed in the background using the value most recently
// written using the write() method.
//
// This library uses timer0 and timer1.
// Note that timer0 may be repurposed when the first servo is attached.
//
// Timers are seized as needed in groups of 12 servos - 24 servos use two
// timers, there are only two timers for the esp8266 so the support stops here
// The sequence used to sieze timers is defined in timers.h
//
// The methods are:
//
// Servo - Class for manipulating servo motors connected to Arduino pins.
@ -58,15 +51,7 @@
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
// NOTE: to maintain a strict refresh interval the user needs to not exceede 8 servos
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (ServoTimerSequence_COUNT * SERVOS_PER_TIMER)
#if defined(ESP8266)
#include "esp8266/ServoTimers.h"
#else
#if !defined(ESP8266)
#error "This library only supports esp8266 boards."
@ -76,6 +61,7 @@ class Servo
{
public:
Servo();
~Servo();
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, uint16_t min, uint16_t max); // as above but also sets min and max values for writes.
void detach();
@ -85,9 +71,11 @@ public:
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t _servoIndex; // index into the channel data for this servo
bool _attached;
uint8_t _pin;
uint16_t _minUs;
uint16_t _maxUs;
uint16_t _valueUs;
};
#endif

View File

@ -1,308 +0,0 @@
/*
Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ESP8266)
#include <Arduino.h>
#include <Servo.h>
#define INVALID_SERVO 255 // flag indicating an invalid servo index
const uint32_t c_CycleCompensation = 4; // compensation us to trim adjust for digitalWrite delays
#define INVALID_PIN 63 // flag indicating never attached servo
struct ServoInfo {
uint8_t pin : 6; // a pin number from 0 to 62, 63 reserved
uint8_t isActive : 1; // true if this channel is enabled, pin not pulsed if false
uint8_t isDetaching : 1; // true if this channel is being detached, maintains pulse integrity
};
struct ServoState {
ServoInfo info;
volatile uint16_t usPulse;
};
#if !defined (SERVO_EXCLUDE_TIMER0)
ServoTimer0 s_servoTimer0;
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
ServoTimer1 s_servoTimer1;
#endif
static ServoState s_servos[MAX_SERVOS]; // static array of servo structures
static uint8_t s_servoCount = 0; // the total number of attached s_servos
// inconvenience macros
#define SERVO_INDEX_TO_TIMER(servoIndex) ((ServoTimerSequence)(servoIndex / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX(timerId, channel) ((timerId * SERVOS_PER_TIMER) + channel) // macro to access servo index by timer and channel
// similiar to map but will have increased accuracy that provides a more
// symetric api (call it and use result to reverse will provide the original value)
//
int improved_map(int value, int minIn, int maxIn, int minOut, int maxOut)
{
const int rangeIn = maxIn - minIn;
const int rangeOut = maxOut - minOut;
const int deltaIn = value - minIn;
// fixed point math constants to improve accurancy of divide and rounding
const int fixedHalfDecimal = 1;
const int fixedDecimal = fixedHalfDecimal * 2;
return ((deltaIn * rangeOut * fixedDecimal) / (rangeIn) + fixedHalfDecimal) / fixedDecimal + minOut;
}
//------------------------------------------------------------------------------
// Interrupt handler template method that takes a class that implements
// a standard set of methods for the timer abstraction
//------------------------------------------------------------------------------
template <class T>
static void Servo_Handler(T* timer) ICACHE_RAM_ATTR;
template <class T>
static void Servo_Handler(T* timer)
{
uint8_t servoIndex;
// clear interrupt
timer->ResetInterrupt();
if (timer->isEndOfCycle()) {
timer->StartCycle();
}
else {
servoIndex = SERVO_INDEX(timer->timerId(), timer->getCurrentChannel());
if (servoIndex < s_servoCount && s_servos[servoIndex].info.isActive) {
// pulse this channel low if activated
digitalWrite(s_servos[servoIndex].info.pin, LOW);
if (s_servos[servoIndex].info.isDetaching) {
s_servos[servoIndex].info.isActive = false;
s_servos[servoIndex].info.isDetaching = false;
}
}
timer->nextChannel();
}
servoIndex = SERVO_INDEX(timer->timerId(), timer->getCurrentChannel());
if (servoIndex < s_servoCount &&
timer->getCurrentChannel() < SERVOS_PER_TIMER) {
timer->SetPulseCompare(timer->usToTicks(s_servos[servoIndex].usPulse) - c_CycleCompensation);
if (s_servos[servoIndex].info.isActive) {
if (s_servos[servoIndex].info.isDetaching) {
// it was active, reset state and leave low
s_servos[servoIndex].info.isActive = false;
s_servos[servoIndex].info.isDetaching = false;
}
else {
// its an active channel so pulse it high
digitalWrite(s_servos[servoIndex].info.pin, HIGH);
}
}
}
else {
if (!isTimerActive(timer->timerId())) {
// no active running channels on this timer, stop the ISR
finISR(timer->timerId());
}
else {
// finished all channels so wait for the refresh period to expire before starting over
// allow a few ticks to ensure the next match is not missed
uint32_t refreshCompare = timer->usToTicks(REFRESH_INTERVAL);
if ((timer->GetCycleCount() + c_CycleCompensation * 2) < refreshCompare) {
timer->SetCycleCompare(refreshCompare - c_CycleCompensation);
}
else {
// at least REFRESH_INTERVAL has elapsed
timer->SetCycleCompare(timer->GetCycleCount() + c_CycleCompensation * 2);
}
}
timer->setEndOfCycle();
}
}
static void handler0() ICACHE_RAM_ATTR;
static void handler0()
{
Servo_Handler<ServoTimer0>(&s_servoTimer0);
}
static void handler1() ICACHE_RAM_ATTR;
static void handler1()
{
Servo_Handler<ServoTimer1>(&s_servoTimer1);
}
static void initISR(ServoTimerSequence timerId)
{
#if !defined (SERVO_EXCLUDE_TIMER0)
if (timerId == ServoTimerSequence_Timer0)
s_servoTimer0.InitInterrupt(&handler0);
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
if (timerId == ServoTimerSequence_Timer1)
s_servoTimer1.InitInterrupt(&handler1);
#endif
}
static void finISR(ServoTimerSequence timerId) ICACHE_RAM_ATTR;
static void finISR(ServoTimerSequence timerId)
{
#if !defined (SERVO_EXCLUDE_TIMER0)
if (timerId == ServoTimerSequence_Timer0)
s_servoTimer0.StopInterrupt();
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
if (timerId == ServoTimerSequence_Timer1)
s_servoTimer1.StopInterrupt();
#endif
}
// returns true if any servo is active on this timer
static boolean isTimerActive(ServoTimerSequence timerId) ICACHE_RAM_ATTR;
static boolean isTimerActive(ServoTimerSequence timerId)
{
for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) {
if (s_servos[SERVO_INDEX(timerId, channel)].info.isActive) {
return true;
}
}
return false;
}
//-------------------------------------------------------------------
// Servo class methods
Servo::Servo()
{
if (s_servoCount < MAX_SERVOS) {
// assign a servo index to this instance
_servoIndex = s_servoCount++;
// store default values
s_servos[_servoIndex].usPulse = DEFAULT_PULSE_WIDTH;
// set default _minUs and _maxUs incase write() is called before attach()
_minUs = MIN_PULSE_WIDTH;
_maxUs = MAX_PULSE_WIDTH;
s_servos[_servoIndex].info.isActive = false;
s_servos[_servoIndex].info.isDetaching = false;
s_servos[_servoIndex].info.pin = INVALID_PIN;
}
else {
_servoIndex = INVALID_SERVO; // too many servos
}
}
uint8_t Servo::attach(int pin)
{
return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, uint16_t minUs, uint16_t maxUs)
{
ServoTimerSequence timerId;
if (_servoIndex < MAX_SERVOS) {
if (s_servos[_servoIndex].info.pin == INVALID_PIN) {
pinMode(pin, OUTPUT); // set servo pin to output
digitalWrite(pin, LOW);
s_servos[_servoIndex].info.pin = pin;
}
// keep the min and max within 200-3000 us, these are extreme
// ranges and should support extreme servos while maintaining
// reasonable ranges
_maxUs = max((uint16_t)250, min((uint16_t)3000, maxUs));
_minUs = max((uint16_t)200, min(_maxUs, minUs));
// initialize the timerId if it has not already been initialized
timerId = SERVO_INDEX_TO_TIMER(_servoIndex);
if (!isTimerActive(timerId)) {
initISR(timerId);
}
s_servos[_servoIndex].info.isDetaching = false;
s_servos[_servoIndex].info.isActive = true; // this must be set after the check for isTimerActive
}
return _servoIndex;
}
void Servo::detach()
{
if (s_servos[_servoIndex].info.isActive) {
s_servos[_servoIndex].info.isDetaching = true;
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH) {
// assumed to be 0-180 degrees servo
value = constrain(value, 0, 180);
// writeMicroseconds will contrain the calculated value for us
// for any user defined min and max, but we must use default min max
value = improved_map(value, 0, 180, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// ensure channel is valid
if ((_servoIndex < MAX_SERVOS)) {
// ensure pulse width is valid
value = constrain(value, _minUs, _maxUs);
s_servos[_servoIndex].usPulse = value;
}
}
int Servo::read() // return the value as degrees
{
// read returns the angle for an assumed 0-180, so we calculate using
// the normal min/max constants and not user defined ones
return improved_map(readMicroseconds(), MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if (_servoIndex != INVALID_SERVO) {
pulsewidth = s_servos[_servoIndex].usPulse;
}
else {
pulsewidth = 0;
}
return pulsewidth;
}
bool Servo::attached()
{
return s_servos[_servoIndex].info.isActive;
}
#endif

View File

@ -1,225 +0,0 @@
/*
Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
//
// Defines for timer abstractions used with Servo library
//
// ServoTimerSequence enumerates the sequence that the timers should be allocated
// ServoTimerSequence_COUNT indicates how many timers are available.
//
enum ServoTimerSequence {
#if !defined (SERVO_EXCLUDE_TIMER0)
ServoTimerSequence_Timer0,
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
ServoTimerSequence_Timer1,
#endif
ServoTimerSequence_COUNT
};
#if !defined (SERVO_EXCLUDE_TIMER0)
struct ServoTimer0
{
public:
ServoTimer0()
{
setEndOfCycle();
}
uint32_t usToTicks(uint32_t us) const
{
return (clockCyclesPerMicrosecond() * us); // converts microseconds to tick
}
uint32_t ticksToUs(uint32_t ticks) const
{
return (ticks / clockCyclesPerMicrosecond()); // converts from ticks back to microseconds
}
void InitInterrupt(timercallback handler)
{
timer0_isr_init();
timer0_attachInterrupt(handler);
}
void ResetInterrupt() {}; // timer0 doesn't have a clear interrupt
void StopInterrupt()
{
timer0_detachInterrupt();
}
void SetPulseCompare(uint32_t value)
{
timer0_write(ESP.getCycleCount() + value);
}
void SetCycleCompare(uint32_t value)
{
timer0_write(_cycleStart + value);
}
uint32_t GetCycleCount() const
{
return ESP.getCycleCount() - _cycleStart;
}
void StartCycle()
{
_cycleStart = ESP.getCycleCount();
_currentChannel = 0;
}
int8_t getCurrentChannel() const
{
return _currentChannel;
}
void nextChannel()
{
_currentChannel++;
}
void setEndOfCycle()
{
_currentChannel = -1;
}
bool isEndOfCycle() const
{
return (_currentChannel == -1);
}
ServoTimerSequence timerId() const
{
return ServoTimerSequence_Timer0;
}
private:
volatile uint32_t _cycleStart;
volatile int8_t _currentChannel;
};
#endif
#if !defined (SERVO_EXCLUDE_TIMER1)
#define TIMER1_TICKS_PER_US (APB_CLK_FREQ / 1000000L)
struct ServoTimer1
{
public:
ServoTimer1()
{
setEndOfCycle();
}
uint32_t usToTicks(uint32_t us) const
{
return (TIMER1_TICKS_PER_US / 16 * us); // converts microseconds to tick
}
uint32_t ticksToUs(uint32_t ticks) const
{
return (ticks / TIMER1_TICKS_PER_US * 16); // converts from ticks back to microseconds
}
void InitInterrupt(timercallback handler)
{
timer1_isr_init();
timer1_attachInterrupt(handler);
timer1_enable(TIM_DIV16, TIM_EDGE, TIM_SINGLE);
timer1_write(usToTicks(REFRESH_INTERVAL));
}
void ResetInterrupt() {}; // timer1 doesn't have a clear interrupt
void StopInterrupt()
{
timer1_detachInterrupt();
}
void SetPulseCompare(uint32_t value)
{
_cycleTicks += value;
timer1_write(value);
}
void SetCycleCompare(uint32_t value)
{
if (value <= _cycleTicks)
{
value = 1;
}
else
{
value -= _cycleTicks;
}
timer1_write(value);
}
uint32_t GetCycleCount() const
{
return _cycleTicks;
}
void StartCycle()
{
_cycleTicks = 0;
_currentChannel = 0;
}
int8_t getCurrentChannel() const
{
return _currentChannel;
}
void nextChannel()
{
_currentChannel++;
}
void setEndOfCycle()
{
_currentChannel = -1;
}
bool isEndOfCycle() const
{
return (_currentChannel == -1);
}
ServoTimerSequence timerId() const
{
return ServoTimerSequence_Timer1;
}
private:
volatile uint32_t _cycleTicks;
volatile int8_t _currentChannel;
};
#endif