1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00

Re-implement PWM generator logic (#7231)

* Re-implement PWM generator logic

Add special-purpose PWM logic to preserve alignment of PWM signals for
things like RGB LEDs.

Keep a sorted list of GPIO changes in memory.  At time 0 of the PWM
cycle, set all pins to high.  As time progresses bring down the
additional pins as their duty cycle runs out.  This way all PWM signals
are time aligned by construction.

This also reduces the number of PWM interrupts by up to 50%.  Before,
both the rising and falling edge of a PWM pin required an interrupt (and
could shift arround accordingly).  Now, a single IRQ sets all PWM rising
edges (so 1 no matter how many PWM pins) and individual interrupts
generate the falling edges.

The code favors duty cycle accuracy over PWM period accuracy (since PWM
is simulating an analog voltage it's the %age of time high that's the
critical factor in most apps, not the refresh rate).  Measurements give
it about 35% less total error over full range at 20khz than master.

@me-no-dev used something very similar in the original PWM generator.

* Adjust running PWM when analogWriteFreq changed

Use fixed point math to adjust running PWM channels to the new
frequency.

* Also preserve phase of running tone/waveforms

Copy over full high/low periods only on the falling edge of a cycle,
ensuring phase alignment for Tone and Servo.

* Clean up signed/unsigned mismatch, 160MHz operat'n

* Turn off PWM on a Tone or digitalWrite

Ensure both the general purpose waveform generator and the PWM generator
are disabled on a pin used for Tone/digitalWrite.

* Remove hump due to fixed IRQ delta

A hump in the dueling PWMs was very prominent in prior pulls.

The hump was caused by having a PWM falling edge just before the cycle
restart, while having the other channel requesting a 1->0 transition
just outside the busy-loop window of 10us. So it gets an IRQ for channel
B 0->1, then waits 2..8us for the next PWM full cycle 0->1, and ends up
returning from interrupt and not scheduling another IRQ for 10us...hence
the horizontal leg of the bump...

Reduce the minimum IRQ latency a little bit to minimize this effect.
There will still be a (significantly smaller) hump when things cross, but
it won't be anywhere near as bad or detectable.

* Speed PWM generator by reordering data struct

Breaking out bitfields required a load and an AND, slowing things down
in the PWM loop. Convert the bitfield into two separate natural-sized
arrays to reduce code size and increase accuracy.

* Remove if() that could never evaluate TRUE

* Add error feedback to waveform generation

Apply an error term to generated waveform phase times to adjust for any
other ongoing processes/waveforms.  Take the actual edge generation
times, subtract them from the desired, and add 1/4 of that (to dampen
any potential oscillations) to the next similar phase of that waveform.

Allows the waveform to seek its proper period and duty cycle without
hardcoding any specific calibrations (which would change depending on
the codepaths, compiler options, etc.) in the source.

* Move _stopPWM and _removePWMEntry to IRAM

Thanks to @dok-net for noticing these need to be in IRAM as they may be
called by digitalWrites in an IRQ.

* Avoid long wait times when PWM freq is low

* Fix bug where tone/pwm could happen on same pin

* Adjust for random 160MHZ operation

The WiFi stack sometimes changes frequency behind our backs, so ESP's
cycle counter does not count constant ticks.

We can't know how long it's been at a different than expected frequency,
so do the next best thing and make sure we adjust any ESP cycles we're
waiting for by the current CPU speed.

This can lead to a blip in the waveform for 1 period when the frequency
toggles from normal, and when it toggles back, but it should remain
for the intervening periods.

Should avoid a lot of LED shimmering and servo errors during WiFi
connection (and maybe transmission).

* Clean up leftover debugs in ISR

* Subtract constant-time overhead for PWM, add 60khz

PWM has a constant minimum time between loops with a single pin, so pull
that time out of the desired PWM period and shift the center of the PWM
frequency closer to the desired without any dynamic feedback needed.

Enable 60khz PWM, even though it's not terribly useful as it causes an
IRQ every ~8us (and each IRQ is 2-3us).  The core can still run w/o WDT,
but it's performance is about 5x slower than unloaded.

* Fix GPIO16 not toggling properly.

* Remove constant offset to PWM period

analogWrite doesn't know about the change in total PWM cycles, so it is
possible for it to send in a value that's beyond the maximum adjusted
PWM cycle count, royally messing up things.  Remove the offset.

Also, fix bug with timer callback functions potentially disabling the
timer if PWM was still active.

* Remove volatiles, replace with explicit membarrier

Volatiles are expensive in flash/IRAM as well as in runtime because they
introduce `memw` instructions everywhere their values are used.

Remove the volatiles and manually mark handshake signals for
re-read/flush to reduce code and runtime in the waveform generator/PWM.

* Consolidate data into single structure

Save IRAM and flash by using a class to hold waveform generator state.
Allows for bast+offset addressing to be used in many cases, removing
`l32r` and literals from the assembly code.

* Factor out common timer shutdown code

* Remove unneeded extra copy on PWM start

* Factor out common edge work in waveform loop

* Factor out waveform phase feedback loop math

* Reduce PWM size by using 32b count, indexes

Byte-wide operations require extra instructions, so make index and count
a full 32-bits wide.

* GP16O is a 1-bit register, just write to it

Testing indicates that GP16O is just a simple 1-bit wide register in the
RTC module.  Instead of |= and &- (i.e. RmW), use direct assignment in
PWM generator.

* Increase PWM linearity in low/high regions

By adjusting the PWM cycle slightly to account for the fixed time
through the compute loop, increase the linear response near the min and
max areas.

* Remove redundant GetCycleCount (non-IRQ)

* Factor out common timer setup operations

* Fix clean-waveform transition, lock to tone faster

New startWaveform waveforms were being copied over on the falling edge
of the cycle, not the rising edge.  Everything else is based on rising
edge, so adjust accordingly.

Also, feedback a larger % of the error term in standard waveform
generation.  Balances the speed at which it locks to tones under
changing circumstances with it not going completely bonkers when a
transient error occurs due to some other bit.

* Reduce IRAM by pushing more work to _setPWM

Simply mark pins as inactive, don't adjust the ordered list until the
next _startPWM call (in IROM).

* Fix typo in PWM pin 1->0 transition

Actually check the pin mask is active before setting the PWM pin low.
D'oh.

* Combine cleanup and pin remove, save 50 bytes IROM

The cleanup (where marked-off pins are removed from the PWM time map)
and remove (where a chosen pin is taken out of the PWM map) do
essentially the same processing.  Combine them and save ~50 bytes of
code and speed things up a tiny bit.

* Remove unused analogMap, toneMap

Save ~100 bytes of IROM by removing the tone/analog pin tracking from
the interface functions.  They were completely unused.

* Save IRAM/heap by adjusting WVF update struct

The waveform update structure included 2 32-bit quantities (so, used
8 * 17 = 136 bytes of RAM) for the next cycle of a waveform.

Replace that with a single update register, in a posted fashion.  The
logic now sets the new state of a single waveform and returns
immediately (so, no need to wait 1ms if you've got an existing waveform
of 1khz).  The waveform NMI will pick up the changed value on its next
cycle.

Reduces IRAM by 40 bytes, and heap by 144 bytes.

* Don't duplicate PWM period calculation

Let the waveform generator be the single source of truth for the PWM
period in clock cycles.

Reduces IRAM by 32 bytes and makes things generally saner.

* Factor out common PWM update code

Replace repeated PWM update logic with a subroutine, and move the
PWMUpdate pointer into the state itself.  Reduces IROM and IRAM,
removes code duplication.

Also remove single-use macros and ifdef configurable options as the
IRAM and IROM impact of them are now not very large.

* Fix regression when analogWrite done cold

Lost an `initTimer()` call in a refactoring, resulting in the core
hanging forever while waiting for the NMI which will never happen.

Re-add as appropriate.

* Save 16b of IRAM by not re-setting edge intr bit

Per @dok-net, drop the rewrite of the edge trigger flag in the timer
interrupt register.  It's set on startup and never cleared, so this is
redundant.  Drops ~16 bytes of IRAM.

* Allow on-the-fly PWM frequency changes

When PWM is running and analogWriteFreq is called, re-calculate the
entire set of PWM pins to the new frequency.  Preserve the raw
numerator/denominator in an unused bit of the waveform structure to
avoid wasting memory.

* Adjust for fixed overhead on PWM period

Pulls the actual PWM period closer to the requested one with a simple,
0-overhead static adjustment.

* Fix value reversal when analogWrite out of range

Silly mistake, swapped high and low values when checking analogWrite for
over/under values.  Fixed

* Don't optimize the satopWaveform call

Save a few bytes of IRAM by not using -O2 on the stopWaveform call.  It
is not a speed-critical function.

* Avoid side effects in addPWMtoList

* Adjust PWM period as fcn of # of PWM pins

Results in much closer PWM frequency range over any number of PWM pins,
while taking 0 add'l overhead in IRAM or in the IRQ.

* Fix occasional Tone artifacts

When _setPWMFreq was called the initial PWM mask was not set to 0
leading to occasional issues where non-PWM pins would be set to 1
on the nextPWM cycle.  Manifested itself as an overtone at the PWM
frequency +/-.

* Reduce CPU usage and enhance low range PWM output

Borrow a trick from #7022 to exit the busy loop when the next event is
too far out.  Also reduce the IRQ delta subtraction because it was
initially not NMI so there was much more variation than now.

Keep the PWM state machine active at a higher prio than the standard
tone generation when the next edge is very close (i.e. when we're at
the max or min of the range and have 2 or more near edges).  Adds a
lot of resolution to the response at low and high ranges.

Go from relative to absolute cycle counts in the main IRQ loop so that
we don't mingle delta-cycles when the delta start was significantly
different.

* Update min IRQ time to remove humps in PWM linearity

Keep PWM error <2.0% on entire range, from 0-100%, and remove the
hump seen in testC by fixing the min IRQ delay setting.

* Remove minor bump at high PWM frequencies

The IRQ lead time was a tiny bit undersized, causing IRQs to come back
too late for about .25us worth of PWM range.  Adjust the constant
accordingly
This commit is contained in:
Earle F. Philhower, III 2020-11-19 20:47:05 -08:00 committed by GitHub
parent 59315836f2
commit ccdde5f396
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 929 additions and 169 deletions

View File

@ -64,10 +64,10 @@ generic.menu.ssl.all=All SSL ciphers (most compatible)
generic.menu.ssl.all.build.sslflags=
generic.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
generic.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
generic.menu.waveform.pwm=Locked PWM
generic.menu.waveform.pwm.build.waveform=
generic.menu.waveform.phase=Locked Phase
generic.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
generic.menu.waveform.pwm=Locked PWM
generic.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
generic.menu.ResetMethod.nodemcu=dtr (aka nodemcu)
generic.menu.ResetMethod.nodemcu.upload.resetmethod=--before default_reset --after hard_reset
generic.menu.ResetMethod.ck=no dtr (aka ck)
@ -537,10 +537,10 @@ esp8285.menu.ssl.all=All SSL ciphers (most compatible)
esp8285.menu.ssl.all.build.sslflags=
esp8285.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
esp8285.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
esp8285.menu.waveform.pwm=Locked PWM
esp8285.menu.waveform.pwm.build.waveform=
esp8285.menu.waveform.phase=Locked Phase
esp8285.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
esp8285.menu.waveform.pwm=Locked PWM
esp8285.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
esp8285.menu.ResetMethod.nodemcu=dtr (aka nodemcu)
esp8285.menu.ResetMethod.nodemcu.upload.resetmethod=--before default_reset --after hard_reset
esp8285.menu.ResetMethod.ck=no dtr (aka ck)
@ -880,10 +880,10 @@ gen4iod.menu.ssl.all=All SSL ciphers (most compatible)
gen4iod.menu.ssl.all.build.sslflags=
gen4iod.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
gen4iod.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
gen4iod.menu.waveform.pwm=Locked PWM
gen4iod.menu.waveform.pwm.build.waveform=
gen4iod.menu.waveform.phase=Locked Phase
gen4iod.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
gen4iod.menu.waveform.pwm=Locked PWM
gen4iod.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
gen4iod.upload.resetmethod=--before default_reset --after hard_reset
gen4iod.menu.FlashMode.dout=DOUT (compatible)
gen4iod.menu.FlashMode.dout.build.flash_mode=dout
@ -1138,10 +1138,10 @@ huzzah.menu.ssl.all=All SSL ciphers (most compatible)
huzzah.menu.ssl.all.build.sslflags=
huzzah.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
huzzah.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
huzzah.menu.waveform.pwm=Locked PWM
huzzah.menu.waveform.pwm.build.waveform=
huzzah.menu.waveform.phase=Locked Phase
huzzah.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
huzzah.menu.waveform.pwm=Locked PWM
huzzah.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
huzzah.upload.resetmethod=--before default_reset --after hard_reset
huzzah.build.flash_mode=qio
huzzah.build.flash_flags=-DFLASHMODE_QIO
@ -1329,10 +1329,10 @@ wifi_slot.menu.ssl.all=All SSL ciphers (most compatible)
wifi_slot.menu.ssl.all.build.sslflags=
wifi_slot.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
wifi_slot.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
wifi_slot.menu.waveform.pwm=Locked PWM
wifi_slot.menu.waveform.pwm.build.waveform=
wifi_slot.menu.waveform.phase=Locked Phase
wifi_slot.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
wifi_slot.menu.waveform.pwm=Locked PWM
wifi_slot.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
wifi_slot.upload.resetmethod=--before default_reset --after hard_reset
wifi_slot.menu.FlashFreq.40=40MHz
wifi_slot.menu.FlashFreq.40.build.flash_freq=40
@ -1646,10 +1646,10 @@ arduino-esp8266.menu.ssl.all=All SSL ciphers (most compatible)
arduino-esp8266.menu.ssl.all.build.sslflags=
arduino-esp8266.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
arduino-esp8266.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
arduino-esp8266.menu.waveform.pwm=Locked PWM
arduino-esp8266.menu.waveform.pwm.build.waveform=
arduino-esp8266.menu.waveform.phase=Locked Phase
arduino-esp8266.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
arduino-esp8266.menu.waveform.pwm=Locked PWM
arduino-esp8266.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
arduino-esp8266.upload.resetmethod=--before no_reset --after soft_reset
arduino-esp8266.build.flash_mode=qio
arduino-esp8266.build.flash_flags=-DFLASHMODE_QIO
@ -1838,10 +1838,10 @@ espmxdevkit.menu.ssl.all=All SSL ciphers (most compatible)
espmxdevkit.menu.ssl.all.build.sslflags=
espmxdevkit.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espmxdevkit.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espmxdevkit.menu.waveform.pwm=Locked PWM
espmxdevkit.menu.waveform.pwm.build.waveform=
espmxdevkit.menu.waveform.phase=Locked Phase
espmxdevkit.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espmxdevkit.menu.waveform.pwm=Locked PWM
espmxdevkit.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espmxdevkit.upload.resetmethod=--before default_reset --after hard_reset
espmxdevkit.build.flash_mode=dout
espmxdevkit.build.flash_flags=-DFLASHMODE_DOUT
@ -2070,10 +2070,10 @@ oak.menu.ssl.all=All SSL ciphers (most compatible)
oak.menu.ssl.all.build.sslflags=
oak.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
oak.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
oak.menu.waveform.pwm=Locked PWM
oak.menu.waveform.pwm.build.waveform=
oak.menu.waveform.phase=Locked Phase
oak.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
oak.menu.waveform.pwm=Locked PWM
oak.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
oak.upload.resetmethod=--before no_reset --after soft_reset
oak.build.flash_mode=dio
oak.build.flash_flags=-DFLASHMODE_DIO
@ -2270,10 +2270,10 @@ espduino.menu.ssl.all=All SSL ciphers (most compatible)
espduino.menu.ssl.all.build.sslflags=
espduino.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espduino.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espduino.menu.waveform.pwm=Locked PWM
espduino.menu.waveform.pwm.build.waveform=
espduino.menu.waveform.phase=Locked Phase
espduino.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espduino.menu.waveform.pwm=Locked PWM
espduino.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espduino.build.flash_mode=dio
espduino.build.flash_flags=-DFLASHMODE_DIO
espduino.build.flash_freq=40
@ -2460,10 +2460,10 @@ espectro.menu.ssl.all=All SSL ciphers (most compatible)
espectro.menu.ssl.all.build.sslflags=
espectro.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espectro.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espectro.menu.waveform.pwm=Locked PWM
espectro.menu.waveform.pwm.build.waveform=
espectro.menu.waveform.phase=Locked Phase
espectro.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espectro.menu.waveform.pwm=Locked PWM
espectro.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espectro.upload.resetmethod=--before default_reset --after hard_reset
espectro.build.flash_mode=dio
espectro.build.flash_flags=-DFLASHMODE_DIO
@ -2651,10 +2651,10 @@ espino.menu.ssl.all=All SSL ciphers (most compatible)
espino.menu.ssl.all.build.sslflags=
espino.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espino.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espino.menu.waveform.pwm=Locked PWM
espino.menu.waveform.pwm.build.waveform=
espino.menu.waveform.phase=Locked Phase
espino.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espino.menu.waveform.pwm=Locked PWM
espino.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espino.menu.ResetMethod.nodemcu=dtr (aka nodemcu)
espino.menu.ResetMethod.nodemcu.upload.resetmethod=--before default_reset --after hard_reset
espino.menu.ResetMethod.ck=no dtr (aka ck)
@ -2845,10 +2845,10 @@ espresso_lite_v1.menu.ssl.all=All SSL ciphers (most compatible)
espresso_lite_v1.menu.ssl.all.build.sslflags=
espresso_lite_v1.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espresso_lite_v1.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espresso_lite_v1.menu.waveform.pwm=Locked PWM
espresso_lite_v1.menu.waveform.pwm.build.waveform=
espresso_lite_v1.menu.waveform.phase=Locked Phase
espresso_lite_v1.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espresso_lite_v1.menu.waveform.pwm=Locked PWM
espresso_lite_v1.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espresso_lite_v1.build.flash_mode=dio
espresso_lite_v1.build.flash_flags=-DFLASHMODE_DIO
espresso_lite_v1.build.flash_freq=40
@ -3039,10 +3039,10 @@ espresso_lite_v2.menu.ssl.all=All SSL ciphers (most compatible)
espresso_lite_v2.menu.ssl.all.build.sslflags=
espresso_lite_v2.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espresso_lite_v2.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espresso_lite_v2.menu.waveform.pwm=Locked PWM
espresso_lite_v2.menu.waveform.pwm.build.waveform=
espresso_lite_v2.menu.waveform.phase=Locked Phase
espresso_lite_v2.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espresso_lite_v2.menu.waveform.pwm=Locked PWM
espresso_lite_v2.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espresso_lite_v2.build.flash_mode=dio
espresso_lite_v2.build.flash_flags=-DFLASHMODE_DIO
espresso_lite_v2.build.flash_freq=40
@ -3243,10 +3243,10 @@ sonoff.menu.ssl.all=All SSL ciphers (most compatible)
sonoff.menu.ssl.all.build.sslflags=
sonoff.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
sonoff.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
sonoff.menu.waveform.pwm=Locked PWM
sonoff.menu.waveform.pwm.build.waveform=
sonoff.menu.waveform.phase=Locked Phase
sonoff.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
sonoff.menu.waveform.pwm=Locked PWM
sonoff.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
sonoff.upload.resetmethod=--before no_reset --after soft_reset
sonoff.build.flash_mode=dout
sonoff.build.flash_flags=-DFLASHMODE_DOUT
@ -3474,10 +3474,10 @@ inventone.menu.ssl.all=All SSL ciphers (most compatible)
inventone.menu.ssl.all.build.sslflags=
inventone.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
inventone.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
inventone.menu.waveform.pwm=Locked PWM
inventone.menu.waveform.pwm.build.waveform=
inventone.menu.waveform.phase=Locked Phase
inventone.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
inventone.menu.waveform.pwm=Locked PWM
inventone.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
inventone.upload.resetmethod=--before default_reset --after hard_reset
inventone.build.flash_mode=dio
inventone.build.flash_flags=-DFLASHMODE_DIO
@ -3665,10 +3665,10 @@ d1_mini.menu.ssl.all=All SSL ciphers (most compatible)
d1_mini.menu.ssl.all.build.sslflags=
d1_mini.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
d1_mini.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
d1_mini.menu.waveform.pwm=Locked PWM
d1_mini.menu.waveform.pwm.build.waveform=
d1_mini.menu.waveform.phase=Locked Phase
d1_mini.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
d1_mini.menu.waveform.pwm=Locked PWM
d1_mini.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
d1_mini.upload.resetmethod=--before default_reset --after hard_reset
d1_mini.build.flash_mode=dio
d1_mini.build.flash_flags=-DFLASHMODE_DIO
@ -3856,10 +3856,10 @@ d1_mini_lite.menu.ssl.all=All SSL ciphers (most compatible)
d1_mini_lite.menu.ssl.all.build.sslflags=
d1_mini_lite.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
d1_mini_lite.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
d1_mini_lite.menu.waveform.pwm=Locked PWM
d1_mini_lite.menu.waveform.pwm.build.waveform=
d1_mini_lite.menu.waveform.phase=Locked Phase
d1_mini_lite.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
d1_mini_lite.menu.waveform.pwm=Locked PWM
d1_mini_lite.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
d1_mini_lite.upload.resetmethod=--before default_reset --after hard_reset
d1_mini_lite.build.flash_mode=dout
d1_mini_lite.build.flash_flags=-DFLASHMODE_DOUT
@ -4087,10 +4087,10 @@ d1_mini_pro.menu.ssl.all=All SSL ciphers (most compatible)
d1_mini_pro.menu.ssl.all.build.sslflags=
d1_mini_pro.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
d1_mini_pro.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
d1_mini_pro.menu.waveform.pwm=Locked PWM
d1_mini_pro.menu.waveform.pwm.build.waveform=
d1_mini_pro.menu.waveform.phase=Locked Phase
d1_mini_pro.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
d1_mini_pro.menu.waveform.pwm=Locked PWM
d1_mini_pro.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
d1_mini_pro.upload.resetmethod=--before default_reset --after hard_reset
d1_mini_pro.build.flash_mode=dio
d1_mini_pro.build.flash_flags=-DFLASHMODE_DIO
@ -4261,10 +4261,10 @@ d1.menu.ssl.all=All SSL ciphers (most compatible)
d1.menu.ssl.all.build.sslflags=
d1.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
d1.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
d1.menu.waveform.pwm=Locked PWM
d1.menu.waveform.pwm.build.waveform=
d1.menu.waveform.phase=Locked Phase
d1.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
d1.menu.waveform.pwm=Locked PWM
d1.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
d1.upload.resetmethod=--before default_reset --after hard_reset
d1.build.flash_mode=dio
d1.build.flash_flags=-DFLASHMODE_DIO
@ -4452,10 +4452,10 @@ nodemcu.menu.ssl.all=All SSL ciphers (most compatible)
nodemcu.menu.ssl.all.build.sslflags=
nodemcu.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
nodemcu.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
nodemcu.menu.waveform.pwm=Locked PWM
nodemcu.menu.waveform.pwm.build.waveform=
nodemcu.menu.waveform.phase=Locked Phase
nodemcu.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
nodemcu.menu.waveform.pwm=Locked PWM
nodemcu.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
nodemcu.upload.resetmethod=--before default_reset --after hard_reset
nodemcu.build.flash_mode=qio
nodemcu.build.flash_flags=-DFLASHMODE_QIO
@ -4643,10 +4643,10 @@ nodemcuv2.menu.ssl.all=All SSL ciphers (most compatible)
nodemcuv2.menu.ssl.all.build.sslflags=
nodemcuv2.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
nodemcuv2.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
nodemcuv2.menu.waveform.pwm=Locked PWM
nodemcuv2.menu.waveform.pwm.build.waveform=
nodemcuv2.menu.waveform.phase=Locked Phase
nodemcuv2.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
nodemcuv2.menu.waveform.pwm=Locked PWM
nodemcuv2.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
nodemcuv2.upload.resetmethod=--before default_reset --after hard_reset
nodemcuv2.build.flash_mode=dio
nodemcuv2.build.flash_flags=-DFLASHMODE_DIO
@ -4838,10 +4838,10 @@ modwifi.menu.ssl.all=All SSL ciphers (most compatible)
modwifi.menu.ssl.all.build.sslflags=
modwifi.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
modwifi.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
modwifi.menu.waveform.pwm=Locked PWM
modwifi.menu.waveform.pwm.build.waveform=
modwifi.menu.waveform.phase=Locked Phase
modwifi.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
modwifi.menu.waveform.pwm=Locked PWM
modwifi.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
modwifi.upload.resetmethod=--before no_reset --after soft_reset
modwifi.build.flash_mode=qio
modwifi.build.flash_flags=-DFLASHMODE_QIO
@ -5049,10 +5049,10 @@ phoenix_v1.menu.ssl.all=All SSL ciphers (most compatible)
phoenix_v1.menu.ssl.all.build.sslflags=
phoenix_v1.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
phoenix_v1.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
phoenix_v1.menu.waveform.pwm=Locked PWM
phoenix_v1.menu.waveform.pwm.build.waveform=
phoenix_v1.menu.waveform.phase=Locked Phase
phoenix_v1.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
phoenix_v1.menu.waveform.pwm=Locked PWM
phoenix_v1.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
phoenix_v1.build.flash_mode=dio
phoenix_v1.build.flash_flags=-DFLASHMODE_DIO
phoenix_v1.build.flash_freq=40
@ -5243,10 +5243,10 @@ phoenix_v2.menu.ssl.all=All SSL ciphers (most compatible)
phoenix_v2.menu.ssl.all.build.sslflags=
phoenix_v2.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
phoenix_v2.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
phoenix_v2.menu.waveform.pwm=Locked PWM
phoenix_v2.menu.waveform.pwm.build.waveform=
phoenix_v2.menu.waveform.phase=Locked Phase
phoenix_v2.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
phoenix_v2.menu.waveform.pwm=Locked PWM
phoenix_v2.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
phoenix_v2.build.flash_mode=dio
phoenix_v2.build.flash_flags=-DFLASHMODE_DIO
phoenix_v2.build.flash_freq=40
@ -5437,10 +5437,10 @@ eduinowifi.menu.ssl.all=All SSL ciphers (most compatible)
eduinowifi.menu.ssl.all.build.sslflags=
eduinowifi.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
eduinowifi.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
eduinowifi.menu.waveform.pwm=Locked PWM
eduinowifi.menu.waveform.pwm.build.waveform=
eduinowifi.menu.waveform.phase=Locked Phase
eduinowifi.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
eduinowifi.menu.waveform.pwm=Locked PWM
eduinowifi.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
eduinowifi.upload.resetmethod=--before default_reset --after hard_reset
eduinowifi.build.flash_mode=dio
eduinowifi.build.flash_flags=-DFLASHMODE_DIO
@ -5628,10 +5628,10 @@ wiolink.menu.ssl.all=All SSL ciphers (most compatible)
wiolink.menu.ssl.all.build.sslflags=
wiolink.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
wiolink.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
wiolink.menu.waveform.pwm=Locked PWM
wiolink.menu.waveform.pwm.build.waveform=
wiolink.menu.waveform.phase=Locked Phase
wiolink.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
wiolink.menu.waveform.pwm=Locked PWM
wiolink.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
wiolink.upload.resetmethod=--before default_reset --after hard_reset
wiolink.build.flash_mode=qio
wiolink.build.flash_flags=-DFLASHMODE_QIO
@ -5819,10 +5819,10 @@ blynk.menu.ssl.all=All SSL ciphers (most compatible)
blynk.menu.ssl.all.build.sslflags=
blynk.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
blynk.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
blynk.menu.waveform.pwm=Locked PWM
blynk.menu.waveform.pwm.build.waveform=
blynk.menu.waveform.phase=Locked Phase
blynk.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
blynk.menu.waveform.pwm=Locked PWM
blynk.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
blynk.upload.resetmethod=--before default_reset --after hard_reset
blynk.build.flash_mode=qio
blynk.build.flash_flags=-DFLASHMODE_QIO
@ -6010,10 +6010,10 @@ thing.menu.ssl.all=All SSL ciphers (most compatible)
thing.menu.ssl.all.build.sslflags=
thing.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
thing.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
thing.menu.waveform.pwm=Locked PWM
thing.menu.waveform.pwm.build.waveform=
thing.menu.waveform.phase=Locked Phase
thing.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
thing.menu.waveform.pwm=Locked PWM
thing.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
thing.upload.resetmethod=--before no_reset --after soft_reset
thing.build.flash_mode=qio
thing.build.flash_flags=-DFLASHMODE_QIO
@ -6201,10 +6201,10 @@ thingdev.menu.ssl.all=All SSL ciphers (most compatible)
thingdev.menu.ssl.all.build.sslflags=
thingdev.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
thingdev.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
thingdev.menu.waveform.pwm=Locked PWM
thingdev.menu.waveform.pwm.build.waveform=
thingdev.menu.waveform.phase=Locked Phase
thingdev.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
thingdev.menu.waveform.pwm=Locked PWM
thingdev.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
thingdev.upload.resetmethod=--before default_reset --after hard_reset
thingdev.build.flash_mode=dio
thingdev.build.flash_flags=-DFLASHMODE_DIO
@ -6392,10 +6392,10 @@ esp210.menu.ssl.all=All SSL ciphers (most compatible)
esp210.menu.ssl.all.build.sslflags=
esp210.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
esp210.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
esp210.menu.waveform.pwm=Locked PWM
esp210.menu.waveform.pwm.build.waveform=
esp210.menu.waveform.phase=Locked Phase
esp210.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
esp210.menu.waveform.pwm=Locked PWM
esp210.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
esp210.upload.resetmethod=--before no_reset --after soft_reset
esp210.build.flash_mode=qio
esp210.build.flash_flags=-DFLASHMODE_QIO
@ -6583,10 +6583,10 @@ espinotee.menu.ssl.all=All SSL ciphers (most compatible)
espinotee.menu.ssl.all.build.sslflags=
espinotee.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
espinotee.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
espinotee.menu.waveform.pwm=Locked PWM
espinotee.menu.waveform.pwm.build.waveform=
espinotee.menu.waveform.phase=Locked Phase
espinotee.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
espinotee.menu.waveform.pwm=Locked PWM
espinotee.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
espinotee.upload.resetmethod=--before default_reset --after hard_reset
espinotee.build.flash_mode=qio
espinotee.build.flash_flags=-DFLASHMODE_QIO
@ -6774,10 +6774,10 @@ wifiduino.menu.ssl.all=All SSL ciphers (most compatible)
wifiduino.menu.ssl.all.build.sslflags=
wifiduino.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
wifiduino.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
wifiduino.menu.waveform.pwm=Locked PWM
wifiduino.menu.waveform.pwm.build.waveform=
wifiduino.menu.waveform.phase=Locked Phase
wifiduino.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
wifiduino.menu.waveform.pwm=Locked PWM
wifiduino.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
wifiduino.upload.resetmethod=--before default_reset --after hard_reset
wifiduino.build.flash_mode=dio
wifiduino.build.flash_flags=-DFLASHMODE_DIO
@ -6982,10 +6982,10 @@ wifinfo.menu.ssl.all=All SSL ciphers (most compatible)
wifinfo.menu.ssl.all.build.sslflags=
wifinfo.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
wifinfo.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
wifinfo.menu.waveform.pwm=Locked PWM
wifinfo.menu.waveform.pwm.build.waveform=
wifinfo.menu.waveform.phase=Locked Phase
wifinfo.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
wifinfo.menu.waveform.pwm=Locked PWM
wifinfo.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
wifinfo.upload.resetmethod=--before default_reset --after hard_reset
wifinfo.build.flash_mode=qio
wifinfo.build.flash_flags=-DFLASHMODE_QIO
@ -7220,10 +7220,10 @@ cw01.menu.ssl.all=All SSL ciphers (most compatible)
cw01.menu.ssl.all.build.sslflags=
cw01.menu.ssl.basic=Basic SSL ciphers (lower ROM use)
cw01.menu.ssl.basic.build.sslflags=-DBEARSSL_SSL_BASIC
cw01.menu.waveform.pwm=Locked PWM
cw01.menu.waveform.pwm.build.waveform=
cw01.menu.waveform.phase=Locked Phase
cw01.menu.waveform.phase.build.waveform=-DWAVEFORM_LOCKED_PHASE
cw01.menu.waveform.pwm=Locked PWM
cw01.menu.waveform.pwm.build.waveform=-DWAVEFORM_LOCKED_PWM
cw01.upload.resetmethod=--before default_reset --after hard_reset
cw01.menu.CrystalFreq.26=26 MHz
cw01.menu.CrystalFreq.40=40 MHz

View File

@ -30,6 +30,13 @@ static void _startTone(uint8_t _pin, uint32_t high, uint32_t low, uint32_t durat
return;
}
#ifndef WAVEFORM_LOCKED_PHASE
// Stop any analogWrites (PWM) because they are a different generator
_stopPWM(_pin);
#endif
// If there's another Tone or startWaveform on this pin
// it will be changed on-the-fly (no need to stop it)
pinMode(_pin, OUTPUT);
high = std::max(high, (uint32_t)microsecondsToClockCycles(25)); // new 20KHz maximum tone frequency,

View File

@ -1,93 +1,7 @@
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
Copyright (c) 2020 Dirk O. Kaar.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds or CPU clock cycles). TIMER1 is
set to 1-shot mode and is always loaded with the time until the next edge
of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP clock cycle counter, not the
timer. This allows for removing interrupt jitter and delay as the counter
always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "ccy" or "ccys" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not TIMER1
cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
// Wrapper to include both versions of the waveform generator
#ifdef WAVEFORM_LOCKED_PHASE
#include <Arduino.h>
#ifndef __ESP8266_WAVEFORM_H
#define __ESP8266_WAVEFORM_H
#ifdef __cplusplus
extern "C" {
#include "core_esp8266_waveform_phase.h"
#else
#include "core_esp8266_waveform_pwm.h"
#endif
// Start or change a waveform of the specified high and low times on specific pin.
// If runtimeUS > 0 then automatically stop it after that many usecs, relative to the next
// full period.
// If waveform is not yet started on pin, and on pin == alignPhase a waveform is running,
// the new waveform is started at phaseOffsetUS phase offset, in microseconds, to that.
// Setting autoPwm to true allows the wave generator to maintain PWM duty to idle cycle ratio
// under load, for applications where frequency or duty cycle must not change, leave false.
// Returns true or false on success or failure.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS,
uint32_t runTimeUS = 0, int8_t alignPhase = -1, uint32_t phaseOffsetUS = 0, bool autoPwm = false);
// Start or change a waveform of the specified high and low CPU clock cycles on specific pin.
// If runtimeCycles > 0 then automatically stop it after that many CPU clock cycles, relative to the next
// full period.
// If waveform is not yet started on pin, and on pin == alignPhase a waveform is running,
// the new waveform is started at phaseOffsetCcys phase offset, in CPU clock cycles, to that.
// Setting autoPwm to true allows the wave generator to maintain PWM duty to idle cycle ratio
// under load, for applications where frequency or duty cycle must not change, leave false.
// Returns true or false on success or failure.
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCcys, uint32_t timeLowCcys,
uint32_t runTimeCcys = 0, int8_t alignPhase = -1, uint32_t phaseOffsetCcys = 0, bool autoPwm = false);
// Stop a waveform, if any, on the specified pin.
// Returns true or false on success or failure.
int stopWaveform(uint8_t pin);
// Add a callback function to be called on *EVERY* timer1 trigger. The
// callback returns the number of microseconds until the next desired call.
// However, since it is called every timer1 interrupt, it may be called
// again before this period. It should therefore use the ESP Cycle Counter
// to determine whether or not to perform an operation.
// Pass in NULL to disable the callback and, if no other waveforms being
// generated, stop the timer as well.
// Make sure the CB function has the ICACHE_RAM_ATTR decorator.
void setTimer1Callback(uint32_t (*fn)());
#ifdef __cplusplus
}
#endif
#endif // __ESP8266_WAVEFORM_H
#endif // WAVEFORM_LOCKED_PHASE

View File

@ -41,7 +41,7 @@
#ifdef WAVEFORM_LOCKED_PHASE
#include "core_esp8266_waveform.h"
#include "core_esp8266_waveform_phase.h"
#include <Arduino.h>
#include "ets_sys.h"
#include <atomic>

View File

@ -0,0 +1,93 @@
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
Copyright (c) 2020 Dirk O. Kaar.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds or CPU clock cycles). TIMER1 is
set to 1-shot mode and is always loaded with the time until the next edge
of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP clock cycle counter, not the
timer. This allows for removing interrupt jitter and delay as the counter
always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "ccy" or "ccys" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not TIMER1
cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WAVEFORM_LOCKED_PHASE
#include <Arduino.h>
#ifndef __ESP8266_WAVEFORM_H
#define __ESP8266_WAVEFORM_H
#ifdef __cplusplus
extern "C" {
#endif
// Start or change a waveform of the specified high and low times on specific pin.
// If runtimeUS > 0 then automatically stop it after that many usecs, relative to the next
// full period.
// If waveform is not yet started on pin, and on pin == alignPhase a waveform is running,
// the new waveform is started at phaseOffsetUS phase offset, in microseconds, to that.
// Setting autoPwm to true allows the wave generator to maintain PWM duty to idle cycle ratio
// under load, for applications where frequency or duty cycle must not change, leave false.
// Returns true or false on success or failure.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS,
uint32_t runTimeUS = 0, int8_t alignPhase = -1, uint32_t phaseOffsetUS = 0, bool autoPwm = false);
// Start or change a waveform of the specified high and low CPU clock cycles on specific pin.
// If runtimeCycles > 0 then automatically stop it after that many CPU clock cycles, relative to the next
// full period.
// If waveform is not yet started on pin, and on pin == alignPhase a waveform is running,
// the new waveform is started at phaseOffsetCcys phase offset, in CPU clock cycles, to that.
// Setting autoPwm to true allows the wave generator to maintain PWM duty to idle cycle ratio
// under load, for applications where frequency or duty cycle must not change, leave false.
// Returns true or false on success or failure.
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCcys, uint32_t timeLowCcys,
uint32_t runTimeCcys = 0, int8_t alignPhase = -1, uint32_t phaseOffsetCcys = 0, bool autoPwm = false);
// Stop a waveform, if any, on the specified pin.
// Returns true or false on success or failure.
int stopWaveform(uint8_t pin);
// Add a callback function to be called on *EVERY* timer1 trigger. The
// callback returns the number of microseconds until the next desired call.
// However, since it is called every timer1 interrupt, it may be called
// again before this period. It should therefore use the ESP Cycle Counter
// to determine whether or not to perform an operation.
// Pass in NULL to disable the callback and, if no other waveforms being
// generated, stop the timer as well.
// Make sure the CB function has the ICACHE_RAM_ATTR decorator.
void setTimer1Callback(uint32_t (*fn)());
#ifdef __cplusplus
}
#endif
#endif // __ESP8266_WAVEFORM_H
#endif // WAVEFORM_LOCKED_PHASE

View File

@ -0,0 +1,626 @@
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds or CPU clock cycles). TIMER1
is set to 1-shot mode and is always loaded with the time until the next
edge of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP clock cycle counter, not
the timer. This allows for removing interrupt jitter and delay as the
counter always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not
TIMER1 cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef WAVEFORM_LOCKED_PHASE
#include <Arduino.h>
#include "ets_sys.h"
#include "core_esp8266_waveform_pwm.h"
#include "user_interface.h"
extern "C" {
// Maximum delay between IRQs
#define MAXIRQUS (10000)
// Waveform generator can create tones, PWM, and servos
typedef struct {
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
uint32_t expiryCycle; // For time-limited waveform, the cycle when this waveform must stop
uint32_t timeHighCycles; // Actual running waveform period (adjusted using desiredCycles)
uint32_t timeLowCycles; //
uint32_t desiredHighCycles; // Ideal waveform period to drive the error signal
uint32_t desiredLowCycles; //
uint32_t lastEdge; // Cycle when this generator last changed
} Waveform;
class WVFState {
public:
Waveform waveform[17]; // State of all possible pins
uint32_t waveformState = 0; // Is the pin high or low, updated in NMI so no access outside the NMI code
uint32_t waveformEnabled = 0; // Is it actively running, updated in NMI so no access outside the NMI code
// Enable lock-free by only allowing updates to waveformState and waveformEnabled from IRQ service routine
uint32_t waveformToEnable = 0; // Message to the NMI handler to start a waveform on a inactive pin
uint32_t waveformToDisable = 0; // Message to the NMI handler to disable a pin from waveform generation
uint32_t waveformToChange = 0; // Mask of pin to change. One bit set in main app, cleared when effected in the NMI
uint32_t waveformNewHigh = 0;
uint32_t waveformNewLow = 0;
uint32_t (*timer1CB)() = NULL;
// Optimize the NMI inner loop by keeping track of the min and max GPIO that we
// are generating. In the common case (1 PWM) these may be the same pin and
// we can avoid looking at the other pins.
uint16_t startPin = 0;
uint16_t endPin = 0;
};
static WVFState wvfState;
// Ensure everything is read/written to RAM
#define MEMBARRIER() { __asm__ volatile("" ::: "memory"); }
// Non-speed critical bits
#pragma GCC optimize ("Os")
// Interrupt on/off control
static ICACHE_RAM_ATTR void timer1Interrupt();
static bool timerRunning = false;
static __attribute__((noinline)) void initTimer() {
if (!timerRunning) {
timer1_disable();
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
ETS_FRC_TIMER1_NMI_INTR_ATTACH(timer1Interrupt);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
timerRunning = true;
timer1_write(microsecondsToClockCycles(10));
}
}
static ICACHE_RAM_ATTR void forceTimerInterrupt() {
if (T1L > microsecondsToClockCycles(10)) {
T1L = microsecondsToClockCycles(10);
}
}
// PWM implementation using special purpose state machine
//
// Keep an ordered list of pins with the delta in cycles between each
// element, with a terminal entry making up the remainder of the PWM
// period. With this method sum(all deltas) == PWM period clock cycles.
//
// At t=0 set all pins high and set the timeout for the 1st edge.
// On interrupt, if we're at the last element reset to t=0 state
// Otherwise, clear that pin down and set delay for next element
// and so forth.
constexpr int maxPWMs = 8;
// PWM machine state
typedef struct PWMState {
uint32_t mask; // Bitmask of active pins
uint32_t cnt; // How many entries
uint32_t idx; // Where the state machine is along the list
uint8_t pin[maxPWMs + 1];
uint32_t delta[maxPWMs + 1];
uint32_t nextServiceCycle; // Clock cycle for next step
struct PWMState *pwmUpdate; // Set by main code, cleared by ISR
} PWMState;
static PWMState pwmState;
static uint32_t _pwmFreq = 1000;
static uint32_t _pwmPeriod = microsecondsToClockCycles(1000000UL) / _pwmFreq;
// If there are no more scheduled activities, shut down Timer 1.
// Otherwise, do nothing.
static ICACHE_RAM_ATTR void disableIdleTimer() {
if (timerRunning && !wvfState.waveformEnabled && !pwmState.cnt && !wvfState.timer1CB) {
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
timer1_disable();
timer1_isr_init();
timerRunning = false;
}
}
// Notify the NMI that a new PWM state is available through the mailbox.
// Wait for mailbox to be emptied (either busy or delay() as needed)
static ICACHE_RAM_ATTR void _notifyPWM(PWMState *p, bool idle) {
p->pwmUpdate = nullptr;
pwmState.pwmUpdate = p;
MEMBARRIER();
forceTimerInterrupt();
while (pwmState.pwmUpdate) {
if (idle) {
delay(0);
}
MEMBARRIER();
}
}
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range);
// Called when analogWriteFreq() changed to update the PWM total period
void _setPWMFreq(uint32_t freq) {
_pwmFreq = freq;
// Convert frequency into clock cycles
uint32_t cc = microsecondsToClockCycles(1000000UL) / freq;
// Simple static adjustment to bring period closer to requested due to overhead
// Empirically determined as a constant PWM delay and a function of the number of PWMs
#if F_CPU == 80000000
cc -= ((microsecondsToClockCycles(pwmState.cnt) * 13) >> 4) + 110;
#else
cc -= ((microsecondsToClockCycles(pwmState.cnt) * 10) >> 4) + 75;
#endif
if (cc == _pwmPeriod) {
return; // No change
}
_pwmPeriod = cc;
if (pwmState.cnt) {
PWMState p; // The working copy since we can't edit the one in use
p.mask = 0;
p.cnt = 0;
for (uint32_t i = 0; i < pwmState.cnt; i++) {
auto pin = pwmState.pin[i];
_addPWMtoList(p, pin, wvfState.waveform[pin].desiredHighCycles, wvfState.waveform[pin].desiredLowCycles);
}
// Update and wait for mailbox to be emptied
initTimer();
_notifyPWM(&p, true);
disableIdleTimer();
}
}
// Helper routine to remove an entry from the state machine
// and clean up any marked-off entries
static void _cleanAndRemovePWM(PWMState *p, int pin) {
uint32_t leftover = 0;
uint32_t in, out;
for (in = 0, out = 0; in < p->cnt; in++) {
if ((p->pin[in] != pin) && (p->mask & (1<<p->pin[in]))) {
p->pin[out] = p->pin[in];
p->delta[out] = p->delta[in] + leftover;
leftover = 0;
out++;
} else {
leftover += p->delta[in];
p->mask &= ~(1<<p->pin[in]);
}
}
p->cnt = out;
// Final pin is never used: p->pin[out] = 0xff;
p->delta[out] = p->delta[in] + leftover;
}
// Disable PWM on a specific pin (i.e. when a digitalWrite or analogWrite(0%/100%))
ICACHE_RAM_ATTR bool _stopPWM(int pin) {
if (!((1<<pin) & pwmState.mask)) {
return false; // Pin not actually active
}
PWMState p; // The working copy since we can't edit the one in use
p = pwmState;
// In _stopPWM we just clear the mask but keep everything else
// untouched to save IRAM. The main startPWM will handle cleanup.
p.mask &= ~(1<<pin);
if (!p.mask) {
// If all have been stopped, then turn PWM off completely
p.cnt = 0;
}
// Update and wait for mailbox to be emptied, no delay (could be in ISR)
_notifyPWM(&p, false);
// Possibly shut down the timer completely if we're done
disableIdleTimer();
return true;
}
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range) {
// Stash the val and range so we can re-evaluate the fraction
// should the user change PWM frequency. This allows us to
// give as great a precision as possible. We know by construction
// that the waveform for this pin will be inactive so we can borrow
// memory from that structure.
wvfState.waveform[pin].desiredHighCycles = val; // Numerator == high
wvfState.waveform[pin].desiredLowCycles = range; // Denominator == low
uint32_t cc = (_pwmPeriod * val) / range;
// Clip to sane values in the case we go from OK to not-OK when adjusting frequencies
if (cc == 0) {
cc = 1;
} else if (cc >= _pwmPeriod) {
cc = _pwmPeriod - 1;
}
if (p.cnt == 0) {
// Starting up from scratch, special case 1st element and PWM period
p.pin[0] = pin;
p.delta[0] = cc;
// Final pin is never used: p.pin[1] = 0xff;
p.delta[1] = _pwmPeriod - cc;
} else {
uint32_t ttl = 0;
uint32_t i;
// Skip along until we're at the spot to insert
for (i=0; (i <= p.cnt) && (ttl + p.delta[i] < cc); i++) {
ttl += p.delta[i];
}
// Shift everything out by one to make space for new edge
for (int32_t j = p.cnt; j >= (int)i; j--) {
p.pin[j + 1] = p.pin[j];
p.delta[j + 1] = p.delta[j];
}
int off = cc - ttl; // The delta from the last edge to the one we're inserting
p.pin[i] = pin;
p.delta[i] = off; // Add the delta to this new pin
p.delta[i + 1] -= off; // And subtract it from the follower to keep sum(deltas) constant
}
p.cnt++;
p.mask |= 1<<pin;
}
// Called by analogWrite(1...99%) to set the PWM duty in clock cycles
bool _setPWM(int pin, uint32_t val, uint32_t range) {
stopWaveform(pin);
PWMState p; // Working copy
p = pwmState;
// Get rid of any entries for this pin
_cleanAndRemovePWM(&p, pin);
// And add it to the list, in order
if (p.cnt >= maxPWMs) {
return false; // No space left
}
// Sanity check for all-on/off
uint32_t cc = (_pwmPeriod * val) / range;
if ((cc == 0) || (cc >= _pwmPeriod)) {
digitalWrite(pin, cc ? HIGH : LOW);
return true;
}
_addPWMtoList(p, pin, val, range);
// Set mailbox and wait for ISR to copy it over
initTimer();
_notifyPWM(&p, true);
disableIdleTimer();
// Potentially recalculate the PWM period if we've added another pin
_setPWMFreq(_pwmFreq);
return true;
}
// Start up a waveform on a pin, or change the current one. Will change to the new
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
// first, then it will immediately begin.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS) {
return startWaveformClockCycles(pin, microsecondsToClockCycles(timeHighUS), microsecondsToClockCycles(timeLowUS), microsecondsToClockCycles(runTimeUS));
}
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles) {
if ((pin > 16) || isFlashInterfacePin(pin)) {
return false;
}
Waveform *wave = &wvfState.waveform[pin];
wave->expiryCycle = runTimeCycles ? ESP.getCycleCount() + runTimeCycles : 0;
if (runTimeCycles && !wave->expiryCycle) {
wave->expiryCycle = 1; // expiryCycle==0 means no timeout, so avoid setting it
}
_stopPWM(pin); // Make sure there's no PWM live here
uint32_t mask = 1<<pin;
MEMBARRIER();
if (wvfState.waveformEnabled & mask) {
// Make sure no waveform changes are waiting to be applied
while (wvfState.waveformToChange) {
delay(0); // Wait for waveform to update
// No mem barrier here, the call to a global function implies global state updated
}
wvfState.waveformNewHigh = timeHighCycles;
wvfState.waveformNewLow = timeLowCycles;
MEMBARRIER();
wvfState.waveformToChange = mask;
// The waveform will be updated some time in the future on the next period for the signal
} else { // if (!(wvfState.waveformEnabled & mask)) {
wave->timeHighCycles = timeHighCycles;
wave->desiredHighCycles = timeHighCycles;
wave->timeLowCycles = timeLowCycles;
wave->desiredLowCycles = timeLowCycles;
wave->lastEdge = 0;
wave->nextServiceCycle = ESP.getCycleCount() + microsecondsToClockCycles(1);
wvfState.waveformToEnable |= mask;
MEMBARRIER();
initTimer();
forceTimerInterrupt();
while (wvfState.waveformToEnable) {
delay(0); // Wait for waveform to update
// No mem barrier here, the call to a global function implies global state updated
}
}
return true;
}
// Set a callback. Pass in NULL to stop it
void setTimer1Callback(uint32_t (*fn)()) {
wvfState.timer1CB = fn;
if (fn) {
initTimer();
forceTimerInterrupt();
}
disableIdleTimer();
}
// Stops a waveform on a pin
int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) {
// Can't possibly need to stop anything if there is no timer active
if (!timerRunning) {
return false;
}
// If user sends in a pin >16 but <32, this will always point to a 0 bit
// If they send >=32, then the shift will result in 0 and it will also return false
uint32_t mask = 1<<pin;
if (wvfState.waveformEnabled & mask) {
wvfState.waveformToDisable = mask;
// Cancel any pending updates for this waveform, too.
if (wvfState.waveformToChange & mask) {
wvfState.waveformToChange = 0;
}
forceTimerInterrupt();
while (wvfState.waveformToDisable) {
MEMBARRIER(); // If it wasn't written yet, it has to be by now
/* no-op */ // Can't delay() since stopWaveform may be called from an IRQ
}
}
disableIdleTimer();
return true;
}
// Speed critical bits
#pragma GCC optimize ("O2")
// Normally would not want two copies like this, but due to different
// optimization levels the inline attribute gets lost if we try the
// other version.
static inline ICACHE_RAM_ATTR uint32_t GetCycleCountIRQ() {
uint32_t ccount;
__asm__ __volatile__("rsr %0,ccount":"=a"(ccount));
return ccount;
}
// Find the earliest cycle as compared to right now
static inline ICACHE_RAM_ATTR uint32_t earliest(uint32_t a, uint32_t b) {
uint32_t now = GetCycleCountIRQ();
int32_t da = a - now;
int32_t db = b - now;
return (da < db) ? a : b;
}
// The SDK and hardware take some time to actually get to our NMI code, so
// decrement the next IRQ's timer value by a bit so we can actually catch the
// real CPU cycle counter we want for the waveforms.
// The SDK also sometimes is running at a different speed the the Arduino core
// so the ESP cycle counter is actually running at a variable speed.
// adjust(x) takes care of adjusting a delta clock cycle amount accordingly.
#if F_CPU == 80000000
#define DELTAIRQ (microsecondsToClockCycles(9)/4)
#define adjust(x) ((x) << (turbo ? 1 : 0))
#else
#define DELTAIRQ (microsecondsToClockCycles(9)/8)
#define adjust(x) ((x) >> 0)
#endif
// When the time to the next edge is greater than this, RTI and set another IRQ to minimize CPU usage
#define MINIRQTIME microsecondsToClockCycles(4)
static ICACHE_RAM_ATTR void timer1Interrupt() {
// Flag if the core is at 160 MHz, for use by adjust()
bool turbo = (*(uint32_t*)0x3FF00014) & 1 ? true : false;
uint32_t nextEventCycle = GetCycleCountIRQ() + microsecondsToClockCycles(MAXIRQUS);
uint32_t timeoutCycle = GetCycleCountIRQ() + microsecondsToClockCycles(14);
if (wvfState.waveformToEnable || wvfState.waveformToDisable) {
// Handle enable/disable requests from main app
wvfState.waveformEnabled = (wvfState.waveformEnabled & ~wvfState.waveformToDisable) | wvfState.waveformToEnable; // Set the requested waveforms on/off
wvfState.waveformState &= ~wvfState.waveformToEnable; // And clear the state of any just started
wvfState.waveformToEnable = 0;
wvfState.waveformToDisable = 0;
// No mem barrier. Globals must be written to RAM on ISR exit.
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t)
wvfState.startPin = __builtin_ffs(wvfState.waveformEnabled) - 1;
// Find the last bit by subtracting off GCC's count-leading-zeros (no offset in this one)
wvfState.endPin = 32 - __builtin_clz(wvfState.waveformEnabled);
} else if (!pwmState.cnt && pwmState.pwmUpdate) {
// Start up the PWM generator by copying from the mailbox
pwmState.cnt = 1;
pwmState.idx = 1; // Ensure copy this cycle, cause it to start at t=0
pwmState.nextServiceCycle = GetCycleCountIRQ(); // Do it this loop!
// No need for mem barrier here. Global must be written by IRQ exit
}
bool done = false;
if (wvfState.waveformEnabled || pwmState.cnt) {
do {
nextEventCycle = GetCycleCountIRQ() + microsecondsToClockCycles(MAXIRQUS);
// PWM state machine implementation
if (pwmState.cnt) {
int32_t cyclesToGo;
do {
cyclesToGo = pwmState.nextServiceCycle - GetCycleCountIRQ();
if (cyclesToGo < 0) {
if (pwmState.idx == pwmState.cnt) { // Start of pulses, possibly copy new
if (pwmState.pwmUpdate) {
// Do the memory copy from temp to global and clear mailbox
pwmState = *(PWMState*)pwmState.pwmUpdate;
}
GPOS = pwmState.mask; // Set all active pins high
if (pwmState.mask & (1<<16)) {
GP16O = 1;
}
pwmState.idx = 0;
} else {
do {
// Drop the pin at this edge
if (pwmState.mask & (1<<pwmState.pin[pwmState.idx])) {
GPOC = 1<<pwmState.pin[pwmState.idx];
if (pwmState.pin[pwmState.idx] == 16) {
GP16O = 0;
}
}
pwmState.idx++;
// Any other pins at this same PWM value will have delta==0, drop them too.
} while (pwmState.delta[pwmState.idx] == 0);
}
// Preserve duty cycle over PWM period by using now+xxx instead of += delta
cyclesToGo = adjust(pwmState.delta[pwmState.idx]);
pwmState.nextServiceCycle = GetCycleCountIRQ() + cyclesToGo;
}
nextEventCycle = earliest(nextEventCycle, pwmState.nextServiceCycle);
} while (pwmState.cnt && (cyclesToGo < 100));
}
for (auto i = wvfState.startPin; i <= wvfState.endPin; i++) {
uint32_t mask = 1<<i;
// If it's not on, ignore!
if (!(wvfState.waveformEnabled & mask)) {
continue;
}
Waveform *wave = &wvfState.waveform[i];
uint32_t now = GetCycleCountIRQ();
// Disable any waveforms that are done
if (wave->expiryCycle) {
int32_t expiryToGo = wave->expiryCycle - now;
if (expiryToGo < 0) {
// Done, remove!
if (i == 16) {
GP16O = 0;
}
GPOC = mask;
wvfState.waveformEnabled &= ~mask;
continue;
}
}
// Check for toggles
int32_t cyclesToGo = wave->nextServiceCycle - now;
if (cyclesToGo < 0) {
uint32_t nextEdgeCycles;
uint32_t desired = 0;
uint32_t *timeToUpdate;
wvfState.waveformState ^= mask;
if (wvfState.waveformState & mask) {
if (i == 16) {
GP16O = 1;
}
GPOS = mask;
if (wvfState.waveformToChange & mask) {
// Copy over next full-cycle timings
wave->timeHighCycles = wvfState.waveformNewHigh;
wave->desiredHighCycles = wvfState.waveformNewHigh;
wave->timeLowCycles = wvfState.waveformNewLow;
wave->desiredLowCycles = wvfState.waveformNewLow;
wave->lastEdge = 0;
wvfState.waveformToChange = 0;
}
if (wave->lastEdge) {
desired = wave->desiredLowCycles;
timeToUpdate = &wave->timeLowCycles;
}
nextEdgeCycles = wave->timeHighCycles;
} else {
if (i == 16) {
GP16O = 0;
}
GPOC = mask;
desired = wave->desiredHighCycles;
timeToUpdate = &wave->timeHighCycles;
nextEdgeCycles = wave->timeLowCycles;
}
if (desired) {
desired = adjust(desired);
int32_t err = desired - (now - wave->lastEdge);
if (abs(err) < desired) { // If we've lost > the entire phase, ignore this error signal
err /= 2;
*timeToUpdate += err;
}
}
nextEdgeCycles = adjust(nextEdgeCycles);
wave->nextServiceCycle = now + nextEdgeCycles;
wave->lastEdge = now;
}
nextEventCycle = earliest(nextEventCycle, wave->nextServiceCycle);
}
// Exit the loop if we've hit the fixed runtime limit or the next event is known to be after that timeout would occur
uint32_t now = GetCycleCountIRQ();
int32_t cycleDeltaNextEvent = nextEventCycle - now;
int32_t cyclesLeftTimeout = timeoutCycle - now;
done = (cycleDeltaNextEvent > MINIRQTIME) || (cyclesLeftTimeout < 0);
} while (!done);
} // if (wvfState.waveformEnabled)
if (wvfState.timer1CB) {
nextEventCycle = earliest(nextEventCycle, GetCycleCountIRQ() + wvfState.timer1CB());
}
int32_t nextEventCycles = nextEventCycle - GetCycleCountIRQ();
if (nextEventCycles < MINIRQTIME) {
nextEventCycles = MINIRQTIME;
}
nextEventCycles -= DELTAIRQ;
// Do it here instead of global function to save time and because we know it's edge-IRQ
T1L = nextEventCycles >> (turbo ? 1 : 0);
}
};
#endif

View File

@ -0,0 +1,87 @@
/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds or CPU clock cycles). TIMER1 is
set to 1-shot mode and is always loaded with the time until the next edge
of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP clock cycle counter, not the
timer. This allows for removing interrupt jitter and delay as the counter
always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not TIMER1
cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef WAVEFORM_LOCKED_PHASE
#include <Arduino.h>
#ifndef __ESP8266_WAVEFORM_H
#define __ESP8266_WAVEFORM_H
#ifdef __cplusplus
extern "C" {
#endif
// Start or change a waveform of the specified high and low times on specific pin.
// If runtimeUS > 0 then automatically stop it after that many usecs.
// Returns true or false on success or failure.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS);
// Start or change a waveform of the specified high and low CPU clock cycles on specific pin.
// If runtimeCycles > 0 then automatically stop it after that many CPU clock cycles.
// Returns true or false on success or failure.
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles);
// Stop a waveform, if any, on the specified pin.
// Returns true or false on success or failure.
int stopWaveform(uint8_t pin);
// Add a callback function to be called on *EVERY* timer1 trigger. The
// callback returns the number of microseconds until the next desired call.
// However, since it is called every timer1 interrupt, it may be called
// again before this period. It should therefore use the ESP Cycle Counter
// to determine whether or not to perform an operation.
// Pass in NULL to disable the callback and, if no other waveforms being
// generated, stop the timer as well.
// Make sure the CB function has the ICACHE_RAM_ATTR decorator.
void setTimer1Callback(uint32_t (*fn)());
// Internal-only calls, not for applications
extern void _setPWMFreq(uint32_t freq);
extern bool _stopPWM(int pin);
extern bool _setPWM(int pin, uint32_t val, uint32_t range);
#ifdef __cplusplus
}
#endif
#endif
#endif

View File

@ -82,7 +82,10 @@ extern void __pinMode(uint8_t pin, uint8_t mode) {
}
extern void ICACHE_RAM_ATTR __digitalWrite(uint8_t pin, uint8_t val) {
stopWaveform(pin);
stopWaveform(pin); // Disable any tone
#ifndef WAVEFORM_LOCKED_PHASE
_stopPWM(pin); // ...and any analogWrite
#endif
if(pin < 16){
if(val) GPOS = (1 << pin);
else GPOC = (1 << pin);

View File

@ -73,11 +73,39 @@ extern void __analogWrite(uint8_t pin, int val) {
}
}
#else // !WAVEFORM_LOCKED_PHASE
extern void __analogWriteFreq(uint32_t freq) {
if (freq < 100) {
freq = 100;
} else if (freq > 60000) {
freq = 60000;
} else {
freq = freq;
}
_setPWMFreq(freq);
}
extern void __analogWrite(uint8_t pin, int val) {
if (pin > 16) {
return;
}
if (val < 0) {
val = 0;
} else if (val > analogScale) {
val = analogScale;
}
// Per the Arduino docs at https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
// val: the duty cycle: between 0 (always off) and 255 (always on).
// So if val = 0 we have digitalWrite(LOW), if we have val==range we have digitalWrite(HIGH)
pinMode(pin, OUTPUT);
_setPWM(pin, val, analogScale);
}
#endif // WAVEFORM_LOCKED_PHASE
#ifdef WAVEFORM_LOCKED_PWM
#endif // WAVEFORM_LOCKED_PWM
extern void __analogWriteRange(uint32_t range) {
if ((range >= 15) && (range <= 65535)) {

View File

@ -95,7 +95,11 @@ void Servo::detach()
{
if (_attached) {
_servoMap &= ~(1 << _pin);
#ifdef WAVEFORM_LOCKED_PHASE
startWaveform(_pin, 0, REFRESH_INTERVAL, 1);
#else
// TODO - timeHigh == 0 is illegal in _PWM code branch. Do nothing for now.
#endif
delay(REFRESH_INTERVAL / 1000); // long enough to complete active period under all circumstances.
stopWaveform(_pin);
_attached = false;

@ -1 +1 @@
Subproject commit 6d520c259cad4457ccdbee362c16f7fa3b504b06
Subproject commit 4c08ee8d2cb7b5b27eb4f86797694cbac94aa5c9

View File

@ -1471,10 +1471,10 @@ def led (name, default, ledList):
def waveform ():
return { 'waveform': collections.OrderedDict([
('.menu.waveform.pwm', 'Locked PWM'),
('.menu.waveform.pwm.build.waveform', ''),
('.menu.waveform.phase', 'Locked Phase'),
('.menu.waveform.phase.build.waveform', '-DWAVEFORM_LOCKED_PHASE'),
('.menu.waveform.pwm', 'Locked PWM'),
('.menu.waveform.pwm.build.waveform', '-DWAVEFORM_LOCKED_PWM'),
])
}

View File

@ -242,9 +242,7 @@ else:
#
if "PIO_FRAMEWORK_ARDUINO_WAVEFORM_LOCKED_PWM" in flatten_cppdefines:
env.Append(CPPDEFINES=[("WAVEFORM_LOCKED_PWM", 1)])
# PIO_FRAMEWORK_ARDUINO_WAVEFORM_LOCKED_PHASE (defaults)
else:
env.Append(CPPDEFINES=[("WAVEFORM_LOCKED_PHASE", 1)])
# PIO_FRAMEWORK_ARDUINO_WAVEFORM_LOCKED_PHASE will be used by default
#
# VTables