1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-25 20:02:37 +03:00

Fix for #4565 (rx fifo length), protect access to rx_buffer (#4568)

* Fix for #4565 (rx fifo length), protect access to rx_buffer

* Fix typo

* reworked to separate safe from unsafe functions, factorized some code, constness

* additional rework for uart_rx_fifo_available()

* swapped unsafe function definition order

* Remove static for overrun string

* Some shorthand for perf and readability
This commit is contained in:
Develo 2018-03-27 22:28:39 -03:00 committed by GitHub
parent decfbdda5f
commit 29580e8166
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -45,16 +45,20 @@
#include "esp8266_peri.h"
#include "user_interface.h"
const char overrun_str [] ICACHE_RODATA_ATTR STORE_ATTR = "uart input full!\r\n";
static int s_uart_debug_nr = UART0;
struct uart_rx_buffer_ {
struct uart_rx_buffer_
{
size_t size;
size_t rpos;
size_t wpos;
uint8_t * buffer;
};
struct uart_ {
struct uart_
{
int uart_nr;
int baud_rate;
bool rx_enabled;
@ -65,132 +69,201 @@ struct uart_ {
struct uart_rx_buffer_ * rx_buffer;
};
size_t uart_resize_rx_buffer(uart_t* uart, size_t new_size)
/*
In the context of the naming conventions in this file, "_unsafe" means two things:
1. the input arguments are not checked. It is up to the caller to check argument sanity.
2. The function body is not interrupt-safe, i.e.: the isr could fire anywhen during the
body execution, leading to corruption of the data shared between the body and the isr
(parts of the rx_buffer).
The unsafe versions of the functions are private to this TU. There are "safe" versions that
wrap the unsafe ones with disabling/enabling of the uart interrupt for safe public use.
*/
inline size_t
uart_rx_fifo_available(const int uart_nr)
{
if(uart == NULL || !uart->rx_enabled) {
return 0;
}
if(uart->rx_buffer->size == new_size) {
return uart->rx_buffer->size;
}
uint8_t * new_buf = (uint8_t*)malloc(new_size);
if(!new_buf) {
return uart->rx_buffer->size;
}
size_t new_wpos = 0;
ETS_UART_INTR_DISABLE();
while(uart_rx_available(uart) && new_wpos < new_size) {
new_buf[new_wpos++] = uart_read_char(uart);
}
uint8_t * old_buf = uart->rx_buffer->buffer;
uart->rx_buffer->rpos = 0;
uart->rx_buffer->wpos = new_wpos;
uart->rx_buffer->size = new_size;
uart->rx_buffer->buffer = new_buf;
free(old_buf);
ETS_UART_INTR_ENABLE();
return uart->rx_buffer->size;
return (USS(uart_nr) >> USRXC) & 0xFF;
}
inline size_t uart_rx_buffer_available(uart_t* uart) {
if(uart->rx_buffer->wpos < uart->rx_buffer->rpos) {
return (uart->rx_buffer->wpos + uart->rx_buffer->size) - uart->rx_buffer->rpos;
}
return uart->rx_buffer->wpos - uart->rx_buffer->rpos;
/**********************************************************/
/************ UNSAFE FUNCTIONS ****************************/
/**********************************************************/
inline size_t
uart_rx_buffer_available_unsafe(const struct uart_rx_buffer_ * rx_buffer)
{
if(rx_buffer->wpos < rx_buffer->rpos)
return (rx_buffer->wpos + rx_buffer->size) - rx_buffer->rpos;
return rx_buffer->wpos - rx_buffer->rpos;
}
inline size_t uart_rx_fifo_available(uart_t* uart) {
return (USS(uart->uart_nr) >> USRXC) & 0x7F;
inline size_t
uart_rx_available_unsafe(uart_t* uart)
{
return uart_rx_buffer_available_unsafe(uart->rx_buffer) + uart_rx_fifo_available(uart->uart_nr);
}
const char overrun_str [] ICACHE_RODATA_ATTR STORE_ATTR = "uart input full!\r\n";
//#define UART_DISCARD_NEWEST
// Copy all the rx fifo bytes that fit into the rx buffer
inline void uart_rx_copy_fifo_to_buffer(uart_t* uart) {
while(uart_rx_fifo_available(uart)){
size_t nextPos = (uart->rx_buffer->wpos + 1) % uart->rx_buffer->size;
if(nextPos == uart->rx_buffer->rpos) {
inline void
uart_rx_copy_fifo_to_buffer_unsafe(uart_t* uart)
{
struct uart_rx_buffer_ *rx_buffer = uart->rx_buffer;
if (!uart->overrun) {
while(uart_rx_fifo_available(uart->uart_nr))
{
size_t nextPos = (rx_buffer->wpos + 1) % rx_buffer->size;
if(nextPos == rx_buffer->rpos)
{
if (!uart->overrun)
{
uart->overrun = true;
os_printf_plus(overrun_str);
}
// a choice has to be made here,
// do we discard newest or oldest data?
#if 0
#ifdef UART_DISCARD_NEWEST
// discard newest data
// Stop copying if rx buffer is full
USF(uart->uart_nr);
break;
#else
// discard oldest data
if (++uart->rx_buffer->rpos == uart->rx_buffer->size)
uart->rx_buffer->rpos = 0;
if (++rx_buffer->rpos == rx_buffer->size)
rx_buffer->rpos = 0;
#endif
}
uint8_t data = USF(uart->uart_nr);
uart->rx_buffer->buffer[uart->rx_buffer->wpos] = data;
uart->rx_buffer->wpos = nextPos;
rx_buffer->buffer[rx_buffer->wpos] = data;
rx_buffer->wpos = nextPos;
}
}
int uart_peek_char(uart_t* uart)
inline int
uart_peek_char_unsafe(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
if (!uart_rx_available_unsafe(uart))
return -1;
}
if (!uart_rx_available(uart)) {
return -1;
}
if (uart_rx_buffer_available(uart) == 0) {
ETS_UART_INTR_DISABLE();
uart_rx_copy_fifo_to_buffer(uart);
ETS_UART_INTR_ENABLE();
}
//without the following if statement and body, there is a good chance of a fifo overrun
if (uart_rx_buffer_available_unsafe(uart->rx_buffer) == 0)
uart_rx_copy_fifo_to_buffer_unsafe(uart);
return uart->rx_buffer->buffer[uart->rx_buffer->rpos];
}
int uart_read_char(uart_t* uart)
inline int
uart_read_char_unsafe(uart_t* uart)
{
if(uart == NULL) {
return -1;
}
int data = uart_peek_char(uart);
if(data != -1) {
int data = uart_peek_char_unsafe(uart);
if(data != -1)
uart->rx_buffer->rpos = (uart->rx_buffer->rpos + 1) % uart->rx_buffer->size;
}
return data;
}
size_t uart_rx_available(uart_t* uart)
/**********************************************************/
size_t
uart_rx_available(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
if(uart == NULL || !uart->rx_enabled)
return 0;
}
return uart_rx_buffer_available(uart) + uart_rx_fifo_available(uart);
ETS_UART_INTR_DISABLE();
int uartrxbufferavailable = uart_rx_buffer_available_unsafe(uart->rx_buffer);
ETS_UART_INTR_ENABLE();
return uartrxbufferavailable + uart_rx_fifo_available(uart->uart_nr);
}
int
uart_peek_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return -1;
ETS_UART_INTR_DISABLE(); //access to rx_buffer can be interrupted by the isr (similar to a critical section), so disable interrupts here
int ret = uart_peek_char_unsafe(uart);
ETS_UART_INTR_ENABLE();
return ret;
}
int
uart_read_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return -1;
ETS_UART_INTR_DISABLE();
int data = uart_read_char_unsafe(uart);
ETS_UART_INTR_ENABLE();
return data;
}
size_t
uart_resize_rx_buffer(uart_t* uart, size_t new_size)
{
if(uart == NULL || !uart->rx_enabled)
return 0;
if(uart->rx_buffer->size == new_size)
return uart->rx_buffer->size;
uint8_t * new_buf = (uint8_t*)malloc(new_size);
if(!new_buf)
return uart->rx_buffer->size;
size_t new_wpos = 0;
ETS_UART_INTR_DISABLE();
while(uart_rx_available_unsafe(uart) && new_wpos < new_size)
new_buf[new_wpos++] = uart_read_char_unsafe(uart); //if uart_rx_available_unsafe() returns non-0, uart_read_char_unsafe() can't return -1
uint8_t * old_buf = uart->rx_buffer->buffer;
uart->rx_buffer->rpos = 0;
uart->rx_buffer->wpos = new_wpos;
uart->rx_buffer->size = new_size;
uart->rx_buffer->buffer = new_buf;
ETS_UART_INTR_ENABLE();
free(old_buf);
return uart->rx_buffer->size;
}
void ICACHE_RAM_ATTR uart_isr(void * arg)
void ICACHE_RAM_ATTR
uart_isr(void * arg)
{
uart_t* uart = (uart_t*)arg;
if(uart == NULL || !uart->rx_enabled) {
if(uart == NULL || !uart->rx_enabled)
{
USIC(uart->uart_nr) = USIS(uart->uart_nr);
ETS_UART_INTR_DISABLE();
return;
}
if(USIS(uart->uart_nr) & ((1 << UIFF) | (1 << UITO))){
uart_rx_copy_fifo_to_buffer(uart);
}
if(USIS(uart->uart_nr) & ((1 << UIFF) | (1 << UITO)))
uart_rx_copy_fifo_to_buffer_unsafe(uart);
USIC(uart->uart_nr) = USIS(uart->uart_nr);
}
void uart_start_isr(uart_t* uart)
static void
uart_start_isr(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
if(uart == NULL || !uart->rx_enabled)
return;
}
// UCFFT value is when the RX fifo full interrupt triggers. A value of 1
// triggers the IRS very often. A value of 127 would not leave much time
// for ISR to clear fifo before the next byte is dropped. So pick a value
@ -202,11 +275,12 @@ void uart_start_isr(uart_t* uart)
ETS_UART_INTR_ENABLE();
}
void uart_stop_isr(uart_t* uart)
static void
uart_stop_isr(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
if(uart == NULL || !uart->rx_enabled)
return;
}
ETS_UART_INTR_DISABLE();
USC1(uart->uart_nr) = 0;
USIC(uart->uart_nr) = 0xffff;
@ -214,59 +288,90 @@ void uart_stop_isr(uart_t* uart)
ETS_UART_INTR_ATTACH(NULL, NULL);
}
static void uart_do_write_char(uart_t* uart, char c)
/*
Reference for uart_tx_fifo_available() and uart_tx_fifo_full():
-Espressif Techinical Reference doc, chapter 11.3.7
-tools/sdk/uart_register.h
-cores/esp8266/esp8266_peri.h
*/
inline size_t
uart_tx_fifo_available(const int uart_nr)
{
while((USS(uart->uart_nr) >> USTXC) >= 0x7f);
USF(uart->uart_nr) = c;
return (USS(uart_nr) >> USTXC) & 0xff;
}
size_t uart_write_char(uart_t* uart, char c)
inline bool
uart_tx_fifo_full(const int uart_nr)
{
if(uart == NULL || !uart->tx_enabled) {
return uart_tx_fifo_available(uart_nr) >= 0x7f;
}
static void
uart_do_write_char(const int uart_nr, char c)
{
while(uart_tx_fifo_full(uart_nr));
USF(uart_nr) = c;
}
size_t
uart_write_char(uart_t* uart, char c)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
}
uart_do_write_char(uart, c);
uart_do_write_char(uart->uart_nr, c);
return 1;
}
size_t uart_write(uart_t* uart, const char* buf, size_t size)
size_t
uart_write(uart_t* uart, const char* buf, size_t size)
{
if(uart == NULL || !uart->tx_enabled) {
if(uart == NULL || !uart->tx_enabled)
return 0;
}
size_t ret = size;
while (size--) {
uart_do_write_char(uart, *buf++);
}
const int uart_nr = uart->uart_nr;
while (size--)
uart_do_write_char(uart_nr, *buf++);
return ret;
}
size_t uart_tx_free(uart_t* uart)
size_t
uart_tx_free(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled) {
if(uart == NULL || !uart->tx_enabled)
return 0;
}
return UART_TX_FIFO_SIZE - ((USS(uart->uart_nr) >> USTXC) & 0xff);
return UART_TX_FIFO_SIZE - uart_tx_fifo_available(uart->uart_nr);
}
void uart_wait_tx_empty(uart_t* uart)
void
uart_wait_tx_empty(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled) {
if(uart == NULL || !uart->tx_enabled)
return;
}
while(((USS(uart->uart_nr) >> USTXC) & 0xff) > 0) {
while(uart_tx_fifo_available(uart->uart_nr) > 0)
delay(0);
}
}
void uart_flush(uart_t* uart)
void
uart_flush(uart_t* uart)
{
if(uart == NULL) {
if(uart == NULL)
return;
}
uint32_t tmp = 0x00000000;
if(uart->rx_enabled) {
if(uart->rx_enabled)
{
tmp |= (1 << UCRXRST);
ETS_UART_INTR_DISABLE();
uart->rx_buffer->rpos = 0;
@ -274,51 +379,55 @@ void uart_flush(uart_t* uart)
ETS_UART_INTR_ENABLE();
}
if(uart->tx_enabled) {
if(uart->tx_enabled)
tmp |= (1 << UCTXRST);
}
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void uart_set_baudrate(uart_t* uart, int baud_rate)
void
uart_set_baudrate(uart_t* uart, int baud_rate)
{
if(uart == NULL) {
if(uart == NULL)
return;
}
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int uart_get_baudrate(uart_t* uart)
int
uart_get_baudrate(uart_t* uart)
{
if(uart == NULL) {
if(uart == NULL)
return 0;
}
return uart->baud_rate;
}
uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, size_t rx_size)
uart_t*
uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, size_t rx_size)
{
uart_t* uart = (uart_t*) malloc(sizeof(uart_t));
if(uart == NULL) {
if(uart == NULL)
return NULL;
}
uart->uart_nr = uart_nr;
uart->overrun = false;
switch(uart->uart_nr) {
switch(uart->uart_nr)
{
case UART0:
ETS_UART_INTR_DISABLE();
ETS_UART_INTR_ATTACH(NULL, NULL);
uart->rx_enabled = (mode != UART_TX_ONLY);
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = (uart->rx_enabled)?3:255;
if(uart->rx_enabled) {
if(uart->rx_enabled)
{
struct uart_rx_buffer_ * rx_buffer = (struct uart_rx_buffer_ *)malloc(sizeof(struct uart_rx_buffer_));
if(rx_buffer == NULL) {
if(rx_buffer == NULL)
{
free(uart);
return NULL;
}
@ -326,7 +435,8 @@ uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, s
rx_buffer->rpos = 0;
rx_buffer->wpos = 0;
rx_buffer->buffer = (uint8_t *)malloc(rx_buffer->size);
if(rx_buffer->buffer == NULL) {
if(rx_buffer->buffer == NULL)
{
free(rx_buffer);
free(uart);
return NULL;
@ -334,29 +444,37 @@ uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, s
uart->rx_buffer = rx_buffer;
pinMode(uart->rx_pin, SPECIAL);
}
if(uart->tx_enabled) {
if (tx_pin == 2) {
if(uart->tx_enabled)
{
if (tx_pin == 2)
{
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
} else {
}
else
{
uart->tx_pin = 1;
pinMode(uart->tx_pin, FUNCTION_0);
}
} else {
}
else
{
uart->tx_pin = 255;
}
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rx_enabled = false;
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = 255;
uart->tx_pin = (uart->tx_enabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->tx_enabled) {
if(uart->tx_enabled)
pinMode(uart->tx_pin, SPECIAL);
}
break;
case UART_NO:
default:
// big fail!
@ -370,20 +488,22 @@ uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, s
USC1(uart->uart_nr) = 0;
USIC(uart->uart_nr) = 0xffff;
USIE(uart->uart_nr) = 0;
if(uart->uart_nr == UART0 && uart->rx_enabled) {
if(uart->uart_nr == UART0 && uart->rx_enabled)
uart_start_isr(uart);
}
return uart;
}
void uart_uninit(uart_t* uart)
void
uart_uninit(uart_t* uart)
{
if(uart == NULL) {
if(uart == NULL)
return;
}
switch(uart->rx_pin) {
uart_stop_isr(uart);
switch(uart->rx_pin)
{
case 3:
pinMode(3, INPUT);
break;
@ -392,7 +512,8 @@ void uart_uninit(uart_t* uart)
break;
}
switch(uart->tx_pin) {
switch(uart->tx_pin)
{
case 1:
pinMode(1, INPUT);
break;
@ -404,52 +525,62 @@ void uart_uninit(uart_t* uart)
break;
}
if(uart->rx_enabled){
if(uart->rx_enabled)
{
uart_stop_isr(uart);
free(uart->rx_buffer->buffer);
free(uart->rx_buffer);
uart_stop_isr(uart);
}
free(uart);
}
void uart_swap(uart_t* uart, int tx_pin)
void
uart_swap(uart_t* uart, int tx_pin)
{
if(uart == NULL) {
if(uart == NULL)
return;
}
switch(uart->uart_nr) {
switch(uart->uart_nr)
{
case UART0:
if(((uart->tx_pin == 1 || uart->tx_pin == 2) && uart->tx_enabled) || (uart->rx_pin == 3 && uart->rx_enabled)) {
if(uart->tx_enabled) { //TX
if(((uart->tx_pin == 1 || uart->tx_pin == 2) && uart->tx_enabled) || (uart->rx_pin == 3 && uart->rx_enabled))
{
if(uart->tx_enabled) //TX
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 15;
}
if(uart->rx_enabled) { //RX
if(uart->rx_enabled) //RX
{
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 13;
}
if(uart->tx_enabled) {
if(uart->tx_enabled)
pinMode(uart->tx_pin, FUNCTION_4); //TX
}
if(uart->rx_enabled) {
if(uart->rx_enabled)
pinMode(uart->rx_pin, FUNCTION_4); //RX
}
IOSWAP |= (1 << IOSWAPU0);
} else {
if(uart->tx_enabled) { //TX
}
else
{
if(uart->tx_enabled) //TX
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = (tx_pin == 2)?2:1;
}
if(uart->rx_enabled) { //RX
if(uart->rx_enabled) //RX
{
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 3;
}
if(uart->tx_enabled) {
if(uart->tx_enabled)
pinMode(uart->tx_pin, (tx_pin == 2)?FUNCTION_4:SPECIAL); //TX
}
if(uart->rx_enabled) {
if(uart->rx_enabled)
pinMode(3, SPECIAL); //RX
}
IOSWAP &= ~(1 << IOSWAPU0);
}
@ -462,19 +593,25 @@ void uart_swap(uart_t* uart, int tx_pin)
}
}
void uart_set_tx(uart_t* uart, int tx_pin)
void
uart_set_tx(uart_t* uart, int tx_pin)
{
if(uart == NULL) {
if(uart == NULL)
return;
}
switch(uart->uart_nr) {
switch(uart->uart_nr)
{
case UART0:
if(uart->tx_enabled) {
if (uart->tx_pin == 1 && tx_pin == 2) {
if(uart->tx_enabled)
{
if (uart->tx_pin == 1 && tx_pin == 2)
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
} else if (uart->tx_pin == 2 && tx_pin != 2) {
}
else if (uart->tx_pin == 2 && tx_pin != 2)
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 1;
pinMode(uart->tx_pin, SPECIAL);
@ -490,82 +627,97 @@ void uart_set_tx(uart_t* uart, int tx_pin)
}
}
void uart_set_pins(uart_t* uart, int tx, int rx)
void
uart_set_pins(uart_t* uart, int tx, int rx)
{
if(uart == NULL) {
if(uart == NULL)
return;
}
if(uart->uart_nr == UART0) { // Only UART0 allows pin changes
if(uart->tx_enabled && uart->tx_pin != tx) {
if( rx == 13 && tx == 15) {
if(uart->uart_nr == UART0) // Only UART0 allows pin changes
{
if(uart->tx_enabled && uart->tx_pin != tx)
{
if( rx == 13 && tx == 15)
{
uart_swap(uart, 15);
} else if (rx == 3 && (tx == 1 || tx == 2)) {
if (uart->rx_pin != rx) {
}
else if (rx == 3 && (tx == 1 || tx == 2))
{
if (uart->rx_pin != rx)
uart_swap(uart, tx);
} else {
else
uart_set_tx(uart, tx);
}
}
}
if(uart->rx_enabled && uart->rx_pin != rx && rx == 13 && tx == 15) {
if(uart->rx_enabled && uart->rx_pin != rx && rx == 13 && tx == 15)
uart_swap(uart, 15);
}
}
}
bool uart_tx_enabled(uart_t* uart)
bool
uart_tx_enabled(uart_t* uart)
{
if(uart == NULL) {
if(uart == NULL)
return false;
}
return uart->tx_enabled;
}
bool uart_rx_enabled(uart_t* uart)
bool
uart_rx_enabled(uart_t* uart)
{
if(uart == NULL) {
if(uart == NULL)
return false;
}
return uart->rx_enabled;
}
bool uart_has_overrun (uart_t* uart)
bool
uart_has_overrun (uart_t* uart)
{
if (uart == NULL || !uart->overrun) {
if (uart == NULL || !uart->overrun)
return false;
}
// clear flag
uart->overrun = false;
return true;
}
static void uart_ignore_char(char c)
static void
uart_ignore_char(char c)
{
(void) c;
}
static void uart0_write_char(char c)
inline void
uart_write_char_delay(const int uart_nr, char c)
{
while(((USS(0) >> USTXC) & 0xff) >= 0x7F) {
while(uart_tx_fifo_full(uart_nr))
delay(0);
}
USF(0) = c;
USF(uart_nr) = c;
}
static void uart1_write_char(char c)
static void
uart0_write_char(char c)
{
while(((USS(1) >> USTXC) & 0xff) >= 0x7F) {
delay(0);
}
USF(1) = c;
uart_write_char_delay(0, c);
}
void uart_set_debug(int uart_nr)
static void
uart1_write_char(char c)
{
uart_write_char_delay(1, c);
}
void
uart_set_debug(int uart_nr)
{
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
switch(s_uart_debug_nr)
{
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
@ -582,7 +734,8 @@ void uart_set_debug(int uart_nr)
}
}
int uart_get_debug()
int
uart_get_debug()
{
return s_uart_debug_nr;
}