mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
175 lines
6.5 KiB
Python
175 lines
6.5 KiB
Python
import os
|
|
from abc import abstractmethod
|
|
from PIL import Image
|
|
from modules import modelloader, shared
|
|
|
|
|
|
models = None
|
|
|
|
|
|
class Upscaler:
|
|
name = None
|
|
folder = None
|
|
model_path = None
|
|
model_name = None
|
|
model_url = None
|
|
enable = True
|
|
filter = None
|
|
model = None
|
|
user_path = None
|
|
scalers = []
|
|
tile = True
|
|
|
|
def __init__(self, create_dirs=True):
|
|
global models # pylint: disable=global-statement
|
|
if models is None:
|
|
models = shared.readfile('html/upscalers.json', as_type="dict")
|
|
self.mod_pad_h = None
|
|
self.tile_size = shared.opts.upscaler_tile_size
|
|
self.tile_pad = shared.opts.upscaler_tile_overlap
|
|
self.device = shared.device
|
|
self.img = None
|
|
self.output = None
|
|
self.scale = 1
|
|
self.half = not shared.cmd_opts.no_half
|
|
self.pre_pad = 0
|
|
self.mod_scale = None
|
|
self.model_download_path = None
|
|
if self.user_path is not None and len(self.user_path) > 0 and not os.path.exists(self.user_path):
|
|
shared.log.info(f'Upscaler create: folder="{self.user_path}"')
|
|
if self.model_path is None and self.name:
|
|
self.model_path = os.path.join(shared.models_path, self.name)
|
|
try:
|
|
if self.model_path and create_dirs:
|
|
os.makedirs(self.model_path, exist_ok=True)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
import cv2 # pylint: disable=unused-import
|
|
self.can_tile = True
|
|
except Exception:
|
|
pass
|
|
|
|
def find_folder(self, folder, scalers, loaded):
|
|
for fn in os.listdir(folder): # from folder
|
|
file_name = os.path.join(folder, fn)
|
|
if os.path.isdir(file_name):
|
|
self.find_folder(file_name, scalers, loaded)
|
|
continue
|
|
if not file_name.endswith('.pth') and not file_name.endswith('.pt'):
|
|
continue
|
|
if file_name not in loaded:
|
|
model_name = os.path.splitext(fn)[0]
|
|
scaler = UpscalerData(name=f'{self.name} {model_name}', path=file_name, upscaler=self)
|
|
scaler.custom = True
|
|
scalers.append(scaler)
|
|
loaded.append(file_name)
|
|
# shared.log.debug(f'Upscaler type={self.name} folder="{folder}" model="{model_name}" path="{file_name}"')
|
|
|
|
def find_scalers(self):
|
|
scalers = []
|
|
loaded = []
|
|
for k, v in models.items(): # from config
|
|
if k != self.name:
|
|
continue
|
|
for model in v:
|
|
local_name = os.path.join(self.user_path, modelloader.friendly_fullname(model[1]))
|
|
model_path = local_name if os.path.exists(local_name) else model[1]
|
|
scaler = UpscalerData(name=f'{k} {model[0]}', path=model_path, upscaler=self)
|
|
scalers.append(scaler)
|
|
loaded.append(model_path)
|
|
# shared.log.debug(f'Upscaler type={self.name} folder="{self.user_path}" model="{model[0]}" path="{model_path}"')
|
|
if self.user_path is None or not os.path.exists(self.user_path):
|
|
return scalers
|
|
self.find_folder(self.user_path, scalers, loaded)
|
|
return scalers
|
|
|
|
@abstractmethod
|
|
def do_upscale(self, img: Image, selected_model: str):
|
|
return img
|
|
|
|
def upscale(self, img: Image, scale, selected_model: str = None):
|
|
jobid = shared.state.begin('Upscale')
|
|
self.scale = scale
|
|
if isinstance(img, Image.Image):
|
|
dest_w = int(img.width * scale)
|
|
dest_h = int(img.height * scale)
|
|
else:
|
|
dest_w = int(img.shape[-1] * scale)
|
|
dest_h = int(img.shape[-2] * scale)
|
|
if self.name.lower().startswith('latent'):
|
|
img = self.do_upscale(img, selected_model)
|
|
else:
|
|
for _ in range(3):
|
|
shape = (img.width, img.height)
|
|
img = self.do_upscale(img, selected_model)
|
|
if shape == (img.width, img.height):
|
|
break
|
|
if img.width >= dest_w and img.height >= dest_h:
|
|
break
|
|
if img.width != dest_w or img.height != dest_h:
|
|
img = img.resize((int(dest_w), int(dest_h)), resample=Image.Resampling.LANCZOS)
|
|
shared.state.end(jobid)
|
|
return img
|
|
|
|
@abstractmethod
|
|
def load_model(self, path: str):
|
|
pass
|
|
|
|
def find_models(self, ext_filter=None) -> list: # pylint: disable=unused-argument
|
|
return modelloader.load_models(model_path=self.model_path, model_url=self.model_url, command_path=self.user_path)
|
|
|
|
def update_status(self, prompt):
|
|
shared.log.info(f'Upscaler: type={self.name} model="{prompt}"')
|
|
|
|
def find_model(self, path):
|
|
info = None
|
|
for scaler in self.scalers:
|
|
if (scaler.data_path == path) or (scaler.name == path):
|
|
info = scaler
|
|
break
|
|
if info is None:
|
|
shared.log.error(f'Upscaler cannot match model: type={self.name} model="{path}"')
|
|
return None
|
|
if info.local_data_path.startswith("http"):
|
|
from modules.modelloader import load_file_from_url
|
|
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_download_path, progress=True)
|
|
if not os.path.isfile(info.local_data_path):
|
|
shared.log.error(f'Upscaler cannot find model: type={self.name} model="{info.local_data_path}"')
|
|
return None
|
|
return info
|
|
|
|
|
|
class UpscalerData:
|
|
custom: bool = False
|
|
name = None
|
|
data_path = None
|
|
scale: int = 4
|
|
scaler: Upscaler = None
|
|
model: None
|
|
|
|
def __init__(self, name: str, path: str = None, upscaler: Upscaler = None, scale: int = 4, model=None):
|
|
self.name = name
|
|
self.data_path = path
|
|
self.local_data_path = path
|
|
self.scaler = upscaler
|
|
self.scale = scale
|
|
self.model = model
|
|
|
|
|
|
def compile_upscaler(model):
|
|
if "Upscaler" in shared.opts.ipex_optimize:
|
|
try:
|
|
from modules.sd_models_compile import ipex_optimize
|
|
model = ipex_optimize(model, apply_to_components=False, op="Upscaler")
|
|
except Exception as e:
|
|
shared.log.warning(f"Upscaler IPEX Optimize: error: {e}")
|
|
|
|
if "Upscaler" in shared.opts.cuda_compile:
|
|
try:
|
|
from modules.sd_models_compile import compile_torch
|
|
model = compile_torch(model, apply_to_components=False, op="Upscaler")
|
|
except Exception as e:
|
|
shared.log.warning(f"Upscaler compile error: {e}")
|
|
return model
|