1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/upscaler.py
2025-12-17 16:43:54 -08:00

175 lines
6.5 KiB
Python

import os
from abc import abstractmethod
from PIL import Image
from modules import modelloader, shared
models = None
class Upscaler:
name = None
folder = None
model_path = None
model_name = None
model_url = None
enable = True
filter = None
model = None
user_path = None
scalers = []
tile = True
def __init__(self, create_dirs=True):
global models # pylint: disable=global-statement
if models is None:
models = shared.readfile('html/upscalers.json', as_type="dict")
self.mod_pad_h = None
self.tile_size = shared.opts.upscaler_tile_size
self.tile_pad = shared.opts.upscaler_tile_overlap
self.device = shared.device
self.img = None
self.output = None
self.scale = 1
self.half = not shared.cmd_opts.no_half
self.pre_pad = 0
self.mod_scale = None
self.model_download_path = None
if self.user_path is not None and len(self.user_path) > 0 and not os.path.exists(self.user_path):
shared.log.info(f'Upscaler create: folder="{self.user_path}"')
if self.model_path is None and self.name:
self.model_path = os.path.join(shared.models_path, self.name)
try:
if self.model_path and create_dirs:
os.makedirs(self.model_path, exist_ok=True)
except Exception:
pass
try:
import cv2 # pylint: disable=unused-import
self.can_tile = True
except Exception:
pass
def find_folder(self, folder, scalers, loaded):
for fn in os.listdir(folder): # from folder
file_name = os.path.join(folder, fn)
if os.path.isdir(file_name):
self.find_folder(file_name, scalers, loaded)
continue
if not file_name.endswith('.pth') and not file_name.endswith('.pt'):
continue
if file_name not in loaded:
model_name = os.path.splitext(fn)[0]
scaler = UpscalerData(name=f'{self.name} {model_name}', path=file_name, upscaler=self)
scaler.custom = True
scalers.append(scaler)
loaded.append(file_name)
# shared.log.debug(f'Upscaler type={self.name} folder="{folder}" model="{model_name}" path="{file_name}"')
def find_scalers(self):
scalers = []
loaded = []
for k, v in models.items(): # from config
if k != self.name:
continue
for model in v:
local_name = os.path.join(self.user_path, modelloader.friendly_fullname(model[1]))
model_path = local_name if os.path.exists(local_name) else model[1]
scaler = UpscalerData(name=f'{k} {model[0]}', path=model_path, upscaler=self)
scalers.append(scaler)
loaded.append(model_path)
# shared.log.debug(f'Upscaler type={self.name} folder="{self.user_path}" model="{model[0]}" path="{model_path}"')
if self.user_path is None or not os.path.exists(self.user_path):
return scalers
self.find_folder(self.user_path, scalers, loaded)
return scalers
@abstractmethod
def do_upscale(self, img: Image, selected_model: str):
return img
def upscale(self, img: Image, scale, selected_model: str = None):
jobid = shared.state.begin('Upscale')
self.scale = scale
if isinstance(img, Image.Image):
dest_w = int(img.width * scale)
dest_h = int(img.height * scale)
else:
dest_w = int(img.shape[-1] * scale)
dest_h = int(img.shape[-2] * scale)
if self.name.lower().startswith('latent'):
img = self.do_upscale(img, selected_model)
else:
for _ in range(3):
shape = (img.width, img.height)
img = self.do_upscale(img, selected_model)
if shape == (img.width, img.height):
break
if img.width >= dest_w and img.height >= dest_h:
break
if img.width != dest_w or img.height != dest_h:
img = img.resize((int(dest_w), int(dest_h)), resample=Image.Resampling.LANCZOS)
shared.state.end(jobid)
return img
@abstractmethod
def load_model(self, path: str):
pass
def find_models(self, ext_filter=None) -> list: # pylint: disable=unused-argument
return modelloader.load_models(model_path=self.model_path, model_url=self.model_url, command_path=self.user_path)
def update_status(self, prompt):
shared.log.info(f'Upscaler: type={self.name} model="{prompt}"')
def find_model(self, path):
info = None
for scaler in self.scalers:
if (scaler.data_path == path) or (scaler.name == path):
info = scaler
break
if info is None:
shared.log.error(f'Upscaler cannot match model: type={self.name} model="{path}"')
return None
if info.local_data_path.startswith("http"):
from modules.modelloader import load_file_from_url
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_download_path, progress=True)
if not os.path.isfile(info.local_data_path):
shared.log.error(f'Upscaler cannot find model: type={self.name} model="{info.local_data_path}"')
return None
return info
class UpscalerData:
custom: bool = False
name = None
data_path = None
scale: int = 4
scaler: Upscaler = None
model: None
def __init__(self, name: str, path: str = None, upscaler: Upscaler = None, scale: int = 4, model=None):
self.name = name
self.data_path = path
self.local_data_path = path
self.scaler = upscaler
self.scale = scale
self.model = model
def compile_upscaler(model):
if "Upscaler" in shared.opts.ipex_optimize:
try:
from modules.sd_models_compile import ipex_optimize
model = ipex_optimize(model, apply_to_components=False, op="Upscaler")
except Exception as e:
shared.log.warning(f"Upscaler IPEX Optimize: error: {e}")
if "Upscaler" in shared.opts.cuda_compile:
try:
from modules.sd_models_compile import compile_torch
model = compile_torch(model, apply_to_components=False, op="Upscaler")
except Exception as e:
shared.log.warning(f"Upscaler compile error: {e}")
return model