import os from abc import abstractmethod from PIL import Image from modules import modelloader, shared models = None class Upscaler: name = None folder = None model_path = None model_name = None model_url = None enable = True filter = None model = None user_path = None scalers = [] tile = True def __init__(self, create_dirs=True): global models # pylint: disable=global-statement if models is None: models = shared.readfile('html/upscalers.json', as_type="dict") self.mod_pad_h = None self.tile_size = shared.opts.upscaler_tile_size self.tile_pad = shared.opts.upscaler_tile_overlap self.device = shared.device self.img = None self.output = None self.scale = 1 self.half = not shared.cmd_opts.no_half self.pre_pad = 0 self.mod_scale = None self.model_download_path = None if self.user_path is not None and len(self.user_path) > 0 and not os.path.exists(self.user_path): shared.log.info(f'Upscaler create: folder="{self.user_path}"') if self.model_path is None and self.name: self.model_path = os.path.join(shared.models_path, self.name) try: if self.model_path and create_dirs: os.makedirs(self.model_path, exist_ok=True) except Exception: pass try: import cv2 # pylint: disable=unused-import self.can_tile = True except Exception: pass def find_folder(self, folder, scalers, loaded): for fn in os.listdir(folder): # from folder file_name = os.path.join(folder, fn) if os.path.isdir(file_name): self.find_folder(file_name, scalers, loaded) continue if not file_name.endswith('.pth') and not file_name.endswith('.pt'): continue if file_name not in loaded: model_name = os.path.splitext(fn)[0] scaler = UpscalerData(name=f'{self.name} {model_name}', path=file_name, upscaler=self) scaler.custom = True scalers.append(scaler) loaded.append(file_name) # shared.log.debug(f'Upscaler type={self.name} folder="{folder}" model="{model_name}" path="{file_name}"') def find_scalers(self): scalers = [] loaded = [] for k, v in models.items(): # from config if k != self.name: continue for model in v: local_name = os.path.join(self.user_path, modelloader.friendly_fullname(model[1])) model_path = local_name if os.path.exists(local_name) else model[1] scaler = UpscalerData(name=f'{k} {model[0]}', path=model_path, upscaler=self) scalers.append(scaler) loaded.append(model_path) # shared.log.debug(f'Upscaler type={self.name} folder="{self.user_path}" model="{model[0]}" path="{model_path}"') if self.user_path is None or not os.path.exists(self.user_path): return scalers self.find_folder(self.user_path, scalers, loaded) return scalers @abstractmethod def do_upscale(self, img: Image, selected_model: str): return img def upscale(self, img: Image, scale, selected_model: str = None): jobid = shared.state.begin('Upscale') self.scale = scale if isinstance(img, Image.Image): dest_w = int(img.width * scale) dest_h = int(img.height * scale) else: dest_w = int(img.shape[-1] * scale) dest_h = int(img.shape[-2] * scale) if self.name.lower().startswith('latent'): img = self.do_upscale(img, selected_model) else: for _ in range(3): shape = (img.width, img.height) img = self.do_upscale(img, selected_model) if shape == (img.width, img.height): break if img.width >= dest_w and img.height >= dest_h: break if img.width != dest_w or img.height != dest_h: img = img.resize((int(dest_w), int(dest_h)), resample=Image.Resampling.LANCZOS) shared.state.end(jobid) return img @abstractmethod def load_model(self, path: str): pass def find_models(self, ext_filter=None) -> list: # pylint: disable=unused-argument return modelloader.load_models(model_path=self.model_path, model_url=self.model_url, command_path=self.user_path) def update_status(self, prompt): shared.log.info(f'Upscaler: type={self.name} model="{prompt}"') def find_model(self, path): info = None for scaler in self.scalers: if (scaler.data_path == path) or (scaler.name == path): info = scaler break if info is None: shared.log.error(f'Upscaler cannot match model: type={self.name} model="{path}"') return None if info.local_data_path.startswith("http"): from modules.modelloader import load_file_from_url info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_download_path, progress=True) if not os.path.isfile(info.local_data_path): shared.log.error(f'Upscaler cannot find model: type={self.name} model="{info.local_data_path}"') return None return info class UpscalerData: custom: bool = False name = None data_path = None scale: int = 4 scaler: Upscaler = None model: None def __init__(self, name: str, path: str = None, upscaler: Upscaler = None, scale: int = 4, model=None): self.name = name self.data_path = path self.local_data_path = path self.scaler = upscaler self.scale = scale self.model = model def compile_upscaler(model): if "Upscaler" in shared.opts.ipex_optimize: try: from modules.sd_models_compile import ipex_optimize model = ipex_optimize(model, apply_to_components=False, op="Upscaler") except Exception as e: shared.log.warning(f"Upscaler IPEX Optimize: error: {e}") if "Upscaler" in shared.opts.cuda_compile: try: from modules.sd_models_compile import compile_torch model = compile_torch(model, apply_to_components=False, op="Upscaler") except Exception as e: shared.log.warning(f"Upscaler compile error: {e}") return model