mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
140 lines
6.4 KiB
Python
140 lines
6.4 KiB
Python
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Any, Dict, List, Optional, Union
|
|
import torch
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers
|
|
from . import ras_manager
|
|
|
|
|
|
def ras_forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor = None,
|
|
pooled_projections: torch.FloatTensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
block_controlnet_hidden_states: List = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
return_dict: bool = True,
|
|
skip_layers: Optional[List[int]] = None,
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`SD3Transformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
from the embeddings of input conditions.
|
|
timestep (`torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
block_controlnet_hidden_states (`list` of `torch.Tensor`):
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
skip_layers (`list` of `int`, *optional*):
|
|
A list of layer indices to skip during the forward pass.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if joint_attention_kwargs is not None:
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
|
|
height, width = hidden_states.shape[-2:]
|
|
|
|
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
|
temb = self.time_text_embed(timestep, pooled_projections)
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
|
|
hidden_states = hidden_states[:, ras_manager.MANAGER.other_patchified_index]
|
|
|
|
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
|
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
|
ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep)
|
|
|
|
joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb)
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
# Skip specified layers
|
|
is_skip = True if skip_layers is not None and index_block in skip_layers else False
|
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
|
|
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
|
block,
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
temb,
|
|
joint_attention_kwargs,
|
|
)
|
|
elif not is_skip:
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=temb,
|
|
joint_attention_kwargs=joint_attention_kwargs,
|
|
)
|
|
|
|
# controlnet residual
|
|
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
|
interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states)
|
|
hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)]
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
# unpatchify
|
|
patch_size = self.config.patch_size
|
|
height = height // patch_size
|
|
width = width // patch_size
|
|
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
|
|
final_hidden_states = torch.zeros(
|
|
(hidden_states.shape[0], height * width, hidden_states.shape[2]),
|
|
device=hidden_states.device,
|
|
dtype=hidden_states.dtype,
|
|
)
|
|
final_hidden_states[:, ras_manager.MANAGER.other_patchified_index] = hidden_states
|
|
hidden_states = final_hidden_states
|
|
|
|
hidden_states = hidden_states.reshape(
|
|
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
|
)
|
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
|
output = hidden_states.reshape(
|
|
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
|
)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
# remove `lora_scale` from each PEFT layer
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer2DModelOutput(sample=output)
|