# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Union import torch from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers from . import ras_manager def ras_forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, pooled_projections: torch.FloatTensor = None, timestep: torch.LongTensor = None, block_controlnet_hidden_states: List = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, skip_layers: Optional[List[int]] = None, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`SD3Transformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep (`torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. skip_layers (`list` of `int`, *optional*): A list of layer indices to skip during the forward pass. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 scale_lora_layers(self, lora_scale) height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. temb = self.time_text_embed(timestep, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step: hidden_states = hidden_states[:, ras_manager.MANAGER.other_patchified_index] if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep) joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb) for index_block, block in enumerate(self.transformer_blocks): # Skip specified layers is_skip = True if skip_layers is not None and index_block in skip_layers else False if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip: encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( block, hidden_states, encoder_hidden_states, temb, joint_attention_kwargs, ) elif not is_skip: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if block_controlnet_hidden_states is not None and block.context_pre_only is False: interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states) hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)] hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # unpatchify patch_size = self.config.patch_size height = height // patch_size width = width // patch_size if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step: final_hidden_states = torch.zeros( (hidden_states.shape[0], height * width, hidden_states.shape[2]), device=hidden_states.device, dtype=hidden_states.dtype, ) final_hidden_states[:, ras_manager.MANAGER.other_patchified_index] = hidden_states hidden_states = final_hidden_states hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) ) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)