1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/prompt_parser_diffusers.py
vladmandic e8a158f4f5 refactor prompt set
Signed-off-by: vladmandic <mandic00@live.com>
2026-01-19 10:51:28 +01:00

789 lines
40 KiB
Python

import os
import math
import time
import typing
from collections import OrderedDict
import torch
from compel.embeddings_provider import BaseTextualInversionManager, EmbeddingsProvider
from transformers import PreTrainedTokenizer
from modules import shared, prompt_parser, devices, sd_models
from modules.prompt_parser_xhinker import get_weighted_text_embeddings_sd15, get_weighted_text_embeddings_sdxl_2p, get_weighted_text_embeddings_sd3, get_weighted_text_embeddings_flux1, get_weighted_text_embeddings_chroma
debug_enabled = os.environ.get('SD_PROMPT_DEBUG', None)
debug = shared.log.trace if debug_enabled else lambda *args, **kwargs: None
debug('Trace: PROMPT')
orig_encode_token_ids_to_embeddings = EmbeddingsProvider._encode_token_ids_to_embeddings # pylint: disable=protected-access
token_dict = None # used by helper get_tokens
token_type = None # used by helper get_tokens
cache = OrderedDict()
last_attention = None
embedder = None
def prompt_compatible(pipe = None):
pipe = pipe or shared.sd_model
if (
'StableDiffusion' not in pipe.__class__.__name__ and
'DemoFusion' not in pipe.__class__.__name__ and
'StableCascade' not in pipe.__class__.__name__ and
'Flux' not in pipe.__class__.__name__ and
'Chroma' not in pipe.__class__.__name__ and
'HiDreamImage' not in pipe.__class__.__name__
):
shared.log.warning(f"Prompt parser not supported: {pipe.__class__.__name__}")
return False
return True
def prepare_model(pipe = None):
pipe = pipe or shared.sd_model
if not hasattr(pipe, "text_encoder") and hasattr(shared.sd_model, "pipe"):
pipe = pipe.pipe
if not hasattr(pipe, "text_encoder"):
return None
elif hasattr(pipe, "maybe_free_model_hooks"):
pipe.maybe_free_model_hooks()
devices.torch_gc()
return pipe
class PromptEmbedder:
def __init__(self,
prompts,
negative_prompts,
steps,
clip_skip,
p,
):
t0 = time.time()
self.prompts = prompts
self.negative_prompts = negative_prompts
self.batchsize = len(self.prompts)
self.attention = last_attention
self.allsame = False # dont collapse prompts
# self.allsame = self.compare_prompts() # collapses batched prompts to single prompt if possible
self.steps = steps
self.clip_skip = clip_skip
# All embeds are nested lists, outer list batch length, inner schedule length
self.prompt_embeds = [[] for _ in range(self.batchsize)]
self.positive_pooleds = [[] for _ in range(self.batchsize)]
self.negative_prompt_embeds = [[] for _ in range(self.batchsize)]
self.negative_pooleds = [[] for _ in range(self.batchsize)]
self.prompt_attention_masks = [[] for _ in range(self.batchsize)]
self.negative_prompt_attention_masks = [[] for _ in range(self.batchsize)]
self.positive_schedule = None
self.negative_schedule = None
self.scheduled_prompt = False
if hasattr(p, 'dummy'):
return
earlyout = self.checkcache(p)
if earlyout:
return
self.pipe = prepare_model(p.sd_model)
if self.pipe is None:
shared.log.error("Prompt encode: cannot find text encoder in model")
return
seen_prompts = {}
# per prompt in batch
for batchidx, (prompt, negative_prompt) in enumerate(zip(self.prompts, self.negative_prompts)):
self.prepare_schedule(prompt, negative_prompt)
schedule_key = (
tuple(self.positive_schedule) if self.positive_schedule is not None else None,
tuple(self.negative_schedule) if self.negative_schedule is not None else None,
self.scheduled_prompt,
)
cache_key = (prompt, negative_prompt, schedule_key)
cached_idx = seen_prompts.get(cache_key)
if cached_idx is not None:
self.clone_embeds(batchidx, cached_idx)
continue
if self.scheduled_prompt:
self.scheduled_encode(self.pipe, batchidx)
else:
self.encode(self.pipe, prompt, negative_prompt, batchidx)
seen_prompts[cache_key] = batchidx
self.checkcache(p)
debug(f"Prompt encode: time={(time.time() - t0):.3f}")
def checkcache(self, p) -> bool:
if shared.opts.sd_textencoder_cache_size == 0:
return False
if self.scheduled_prompt:
debug("Prompt cache: scheduled prompt")
cache.clear()
return False
if self.attention != shared.opts.prompt_attention:
debug(f"Prompt cache: parser={shared.opts.prompt_attention} changed")
cache.clear()
return False
def flatten(xss):
return [x for xs in xss for x in xs]
# unpack EN data in case of TE LoRA
en_data = p.network_data
en_data = [idx.items for item in en_data.values() for idx in item]
effective_batch = 1 if self.allsame else self.batchsize
key = str([self.prompts, self.negative_prompts, effective_batch, self.clip_skip, self.steps, en_data])
item = cache.get(key)
if not item:
if not any(flatten(emb) for emb in [self.prompt_embeds,
self.negative_prompt_embeds,
self.positive_pooleds,
self.negative_pooleds,
self.prompt_attention_masks,
self.negative_prompt_attention_masks]):
return False
else:
cache[key] = {'prompt_embeds': self.prompt_embeds,
'negative_prompt_embeds': self.negative_prompt_embeds,
'positive_pooleds': self.positive_pooleds,
'negative_pooleds': self.negative_pooleds,
'prompt_attention_masks': self.prompt_attention_masks,
'negative_prompt_attention_masks': self.negative_prompt_attention_masks,
}
debug(f"Prompt cache: add={key}")
while len(cache) > int(shared.opts.sd_textencoder_cache_size):
cache.popitem(last=False)
return True
if item:
self.__dict__.update(cache[key])
cache.move_to_end(key)
if self.allsame and len(self.prompt_embeds) < self.batchsize:
self.prompt_embeds = [self.prompt_embeds[0]] * self.batchsize
self.positive_pooleds = [self.positive_pooleds[0]] * self.batchsize
self.negative_prompt_embeds = [self.negative_prompt_embeds[0]] * self.batchsize
self.negative_pooleds = [self.negative_pooleds[0]] * self.batchsize
self.prompt_attention_masks = [self.prompt_attention_masks[0]] * self.batchsize
self.negative_prompt_attention_masks = [self.negative_prompt_attention_masks[0]] * self.batchsize
debug(f"Prompt cache: get={key}")
return True
def compare_prompts(self):
same = (self.prompts == [self.prompts[0]] * len(self.prompts) and self.negative_prompts == [self.negative_prompts[0]] * len(self.negative_prompts))
if same:
self.prompts = [self.prompts[0]]
self.negative_prompts = [self.negative_prompts[0]]
return same
def prepare_schedule(self, prompt, negative_prompt):
self.positive_schedule, scheduled = get_prompt_schedule(prompt, self.steps)
self.negative_schedule, neg_scheduled = get_prompt_schedule(negative_prompt, self.steps)
self.scheduled_prompt = scheduled or neg_scheduled
debug(f"Prompt schedule: positive={self.positive_schedule} negative={self.negative_schedule} scheduled={scheduled}")
def scheduled_encode(self, pipe, batchidx):
prompt_dict = {} # index cache
for i in range(max(len(self.positive_schedule), len(self.negative_schedule))):
positive_prompt = self.positive_schedule[i % len(self.positive_schedule)]
negative_prompt = self.negative_schedule[i % len(self.negative_schedule)]
# skip repeated scheduled subprompts
idx = prompt_dict.get(positive_prompt+negative_prompt)
if idx is not None:
self.extend_embeds(batchidx, idx)
continue
self.encode(pipe, positive_prompt, negative_prompt, batchidx)
prompt_dict[positive_prompt+negative_prompt] = i
def extend_embeds(self, batchidx, idx): # Extends scheduled prompt via index
if len(self.prompt_embeds[batchidx]) > 0:
self.prompt_embeds[batchidx].append(self.prompt_embeds[batchidx][idx])
if len(self.negative_prompt_embeds[batchidx]) > 0:
self.negative_prompt_embeds[batchidx].append(self.negative_prompt_embeds[batchidx][idx])
if len(self.positive_pooleds[batchidx]) > 0:
self.positive_pooleds[batchidx].append(self.positive_pooleds[batchidx][idx])
if len(self.negative_pooleds[batchidx]) > 0:
self.negative_pooleds[batchidx].append(self.negative_pooleds[batchidx][idx])
if len(self.prompt_attention_masks[batchidx]) > 0:
self.prompt_attention_masks[batchidx].append(self.prompt_attention_masks[batchidx][idx])
if len(self.negative_prompt_attention_masks[batchidx]) > 0:
self.negative_prompt_attention_masks[batchidx].append(self.negative_prompt_attention_masks[batchidx][idx])
def encode(self, pipe, positive_prompt, negative_prompt, batchidx):
if positive_prompt is None:
positive_prompt = ''
if negative_prompt is None:
negative_prompt = ''
global last_attention # pylint: disable=global-statement
self.attention = shared.opts.prompt_attention
last_attention = self.attention
if self.attention == "xhinker":
(
prompt_embed,
positive_pooled,
prompt_attention_mask,
negative_embed,
negative_pooled,
negative_prompt_attention_mask
) = get_xhinker_text_embeddings(pipe, positive_prompt, negative_prompt, self.clip_skip)
else:
(
prompt_embed,
positive_pooled,
prompt_attention_mask,
negative_embed,
negative_pooled,
negative_prompt_attention_mask
) = get_weighted_text_embeddings(pipe, positive_prompt, negative_prompt, self.clip_skip)
def _store(target, value):
if value is None:
return
# scheduled prompts need to keep all slices, unscheduled can overwrite
if self.scheduled_prompt and len(target[batchidx]) > 0:
target[batchidx].append(value)
else:
target[batchidx] = [value]
_store(self.prompt_embeds, prompt_embed)
_store(self.negative_prompt_embeds, negative_embed)
_store(self.positive_pooleds, positive_pooled)
_store(self.negative_pooleds, negative_pooled)
_store(self.prompt_attention_masks, prompt_attention_mask)
_store(self.negative_prompt_attention_masks, negative_prompt_attention_mask)
if debug_enabled:
get_tokens(pipe, 'positive', positive_prompt)
get_tokens(pipe, 'negative', negative_prompt)
def clone_embeds(self, batchidx, idx):
def _clone(target):
if len(target) <= idx:
return
src = target[idx]
if isinstance(src, list):
target[batchidx] = [item if not isinstance(item, list) else list(item) for item in src]
else:
target[batchidx] = src
_clone(self.prompt_embeds)
_clone(self.negative_prompt_embeds)
_clone(self.positive_pooleds)
_clone(self.negative_pooleds)
_clone(self.prompt_attention_masks)
_clone(self.negative_prompt_attention_masks)
def __call__(self, key, step=0):
batch = getattr(self, key)
res = []
try:
if len(batch) == 0 or len(batch[0]) == 0:
return None # flux has no negative prompts
if isinstance(batch[0][0], list) and len(batch[0][0]) == 2 and isinstance(batch[0][0][1], torch.Tensor) and batch[0][0][1].shape[0] == 32:
# hidream uses a list of t5 + llama prompt embeds: [t5_embeds, llama_embeds]
# t5_embeds shape: [batch_size, seq_len, dim]
# llama_embeds shape: [number_of_hidden_states, batch_size, seq_len, dim]
res2 = []
for i in range(self.batchsize):
if len(batch[i]) == 0: # if asking for a null key, ie pooled on SD1.5
return None
try:
res.append(batch[i][step][0])
res2.append(batch[i][step][1])
except IndexError:
# if not scheduled, return default
res.append(batch[i][0][0])
res2.append(batch[i][0][1])
res = [torch.cat(res, dim=0), torch.cat(res2, dim=1)]
return res
else:
for i in range(self.batchsize):
if len(batch[i]) == 0: # if asking for a null key, ie pooled on SD1.5
return None
try:
res.append(batch[i][step])
except IndexError:
res.append(batch[i][0]) # if not scheduled, return default
if any(res[0].shape[1] != r.shape[1] for r in res):
res = pad_to_same_length(self.pipe, res)
return torch.cat(res)
except Exception as e:
shared.log.error(f"Prompt encode: {e}")
return None
def compel_hijack(self, token_ids: torch.Tensor, attention_mask: typing.Optional[torch.Tensor] = None) -> torch.Tensor:
needs_hidden_states = self.returned_embeddings_type != 1
text_encoder_output = self.text_encoder(token_ids, attention_mask, output_hidden_states=needs_hidden_states, return_dict=True)
if not needs_hidden_states:
return text_encoder_output.last_hidden_state
try:
normalized = self.returned_embeddings_type > 0
clip_skip = math.floor(abs(self.returned_embeddings_type))
interpolation = abs(self.returned_embeddings_type) - clip_skip
except Exception:
normalized = False
clip_skip = 1
interpolation = False
if interpolation:
hidden_state = (1 - interpolation) * text_encoder_output.hidden_states[-clip_skip] + interpolation * text_encoder_output.hidden_states[-(clip_skip+1)]
else:
hidden_state = text_encoder_output.hidden_states[-clip_skip]
if normalized:
hidden_state = self.text_encoder.text_model.final_layer_norm(hidden_state)
return hidden_state
def sd3_compel_hijack(self, token_ids: torch.Tensor, attention_mask: typing.Optional[torch.Tensor] = None) -> torch.Tensor:
needs_hidden_states = True
text_encoder_output = self.text_encoder(token_ids, attention_mask, output_hidden_states=needs_hidden_states, return_dict=True)
clip_skip = int(self.returned_embeddings_type)
hidden_state = text_encoder_output.hidden_states[-(clip_skip+1)]
return hidden_state
def insert_parser_highjack(pipename):
if "StableDiffusion3" in pipename:
EmbeddingsProvider._encode_token_ids_to_embeddings = sd3_compel_hijack # pylint: disable=protected-access
debug("Load SD3 Parser hijack")
else:
EmbeddingsProvider._encode_token_ids_to_embeddings = compel_hijack # pylint: disable=protected-access
debug("Load Standard Parser hijack")
insert_parser_highjack("Initialize")
# from https://github.com/damian0815/compel/blob/main/src/compel/diffusers_textual_inversion_manager.py
class DiffusersTextualInversionManager(BaseTextualInversionManager):
def __init__(self, pipe, tokenizer):
self.pipe = pipe
self.tokenizer = tokenizer
if hasattr(self.pipe, 'embedding_db'):
self.pipe.embedding_db.embeddings_used.clear()
# code from
# https://github.com/huggingface/diffusers/blob/705c592ea98ba4e288d837b9cba2767623c78603/src/diffusers/loaders.py
def maybe_convert_prompt(self, prompt: typing.Union[str, typing.List[str]], tokenizer: PreTrainedTokenizer):
prompts = [prompt] if not isinstance(prompt, typing.List) else prompt
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, typing.List):
return prompts[0]
return prompts
def _maybe_convert_prompt(self, prompt: str, tokenizer: PreTrainedTokenizer):
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
if hasattr(self.pipe, 'embedding_db'):
self.pipe.embedding_db.embeddings_used.append(token)
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
if hasattr(self.pipe, 'embedding_db'):
self.pipe.embedding_db.embeddings_used = list(set(self.pipe.embedding_db.embeddings_used))
debug(f'Prompt: convert="{prompt}"')
return prompt
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: typing.List[int]) -> typing.List[int]:
if len(token_ids) == 0:
return token_ids
prompt = self.pipe.tokenizer.decode(token_ids)
prompt = self.maybe_convert_prompt(prompt, self.pipe.tokenizer)
debug(f'Prompt: expand="{prompt}"')
return self.pipe.tokenizer.encode(prompt, add_special_tokens=False)
def get_prompt_schedule(prompt, steps):
temp = []
schedule = prompt_parser.get_learned_conditioning_prompt_schedules([prompt], steps)[0]
if all(x == schedule[0] for x in schedule):
return [schedule[0][1]], False
for chunk in schedule:
for s in range(steps):
if len(temp) < s + 1 <= chunk[0]:
temp.append(chunk[1])
return temp, len(schedule) > 1
def get_tokens(pipe, msg, prompt):
global token_dict, token_type # pylint: disable=global-statement
token_count = 0
if shared.sd_loaded and hasattr(pipe, 'tokenizer') and pipe.tokenizer is not None:
tokenizer = pipe.tokenizer
# For multi-modal processors (e.g., PixtralProcessor), use the underlying text tokenizer
if hasattr(tokenizer, 'tokenizer') and tokenizer.tokenizer is not None:
tokenizer = tokenizer.tokenizer
prompt = prompt.replace(' BOS ', ' !!!!!!!! ').replace(' EOS ', ' !!!!!!! ')
debug(f'Prompt tokenizer: type={msg} prompt="{prompt}"')
if token_dict is None or token_type != shared.sd_model_type:
token_type = shared.sd_model_type
fn = getattr(tokenizer, 'name_or_path', '')
if fn.endswith('tokenizer'):
fn = os.path.join(fn, 'vocab.json')
else:
fn = os.path.join(fn, 'tokenizer', 'vocab.json')
token_dict = shared.readfile(fn, silent=True, as_type="dict")
added_tokens = getattr(tokenizer, 'added_tokens_decoder', {})
for k, v in added_tokens.items():
token_dict[str(v)] = k
shared.log.debug(f'Tokenizer: words={len(token_dict)} file="{fn}"')
has_bos_token = getattr(tokenizer, 'bos_token_id', None) is not None
has_eos_token = getattr(tokenizer, 'eos_token_id', None) is not None
try:
ids = tokenizer(prompt)
ids = getattr(ids, 'input_ids', [])
except Exception:
ids = []
if has_bos_token and has_eos_token:
for i in range(len(ids)):
if ids[i] == 21622:
ids[i] = tokenizer.bos_token_id
elif ids[i] == 15203:
ids[i] = tokenizer.eos_token_id
tokens = []
for i in ids:
try:
key = list(token_dict.keys())[list(token_dict.values()).index(i)]
tokens.append(key)
except Exception:
tokens.append(f'UNK_{i}')
token_count = len(ids) - int(has_bos_token) - int(has_eos_token)
debug(f'Prompt tokenizer: type={msg} tokens={token_count} tokens={tokens} ids={ids}')
return token_count
def normalize_prompt(pairs: list):
num_words = 0
total_weight = 0
for section in pairs:
words = len(section[0].split())
if section[1] == -1: # control tokens
continue
num_words += words
total_weight += section[1] * words
avg_weight = round(100 * total_weight / num_words) / 100 if num_words > 0 else 1
debug(f'Prompt stats: words={num_words} weight={avg_weight}')
for section in pairs:
section[1] = section[1] / avg_weight if section[1] != -1 else -1 # skip control tokens
debug(f'Prompt normalized: {pairs}')
return pairs
def get_prompts_with_weights(pipe, prompt: str):
t0 = time.time()
manager = DiffusersTextualInversionManager(pipe, pipe.tokenizer or pipe.tokenizer_2)
prompt = manager.maybe_convert_prompt(prompt, pipe.tokenizer or pipe.tokenizer_2)
texts_and_weights = prompt_parser.parse_prompt_attention(prompt)
if shared.opts.prompt_mean_norm:
texts_and_weights = normalize_prompt(texts_and_weights)
texts, text_weights = zip(*texts_and_weights)
avg_weight = 0
min_weight = 1
max_weight = 0
sections = 0
try:
all_tokens = 0
for text, weight in zip(texts, text_weights):
tokens = get_tokens(pipe, 'section', text)
all_tokens += tokens
avg_weight += tokens*weight
min_weight = min(min_weight, weight)
max_weight = max(max_weight, weight)
if text != 'BREAK':
sections += 1
if all_tokens > 0:
avg_weight = avg_weight / all_tokens
debug(f'Prompt tokenizer: parser={shared.opts.prompt_attention} len={len(prompt)} sections={sections} tokens={all_tokens} weights={min_weight:.2f}/{avg_weight:.2f}/{max_weight:.2f}')
except Exception:
pass
debug(f'Prompt: weights={texts_and_weights} time={(time.time() - t0):.3f}')
return texts, text_weights
def prepare_embedding_providers(pipe, clip_skip) -> list[EmbeddingsProvider]:
device = devices.device
embeddings_providers = []
if 'StableCascade' in pipe.__class__.__name__:
embedding_type = -(clip_skip)
elif 'XL' in pipe.__class__.__name__:
embedding_type = -(clip_skip + 1)
else:
embedding_type = clip_skip
embedding_args = {
'truncate': False,
'returned_embeddings_type': embedding_type,
'device': device,
'dtype_for_device_getter': lambda device: devices.dtype,
}
if getattr(pipe, "prior_pipe", None) is not None and getattr(pipe.prior_pipe, "tokenizer", None) is not None and getattr(pipe.prior_pipe, "text_encoder", None) is not None:
provider = EmbeddingsProvider(padding_attention_mask_value=0, tokenizer=pipe.prior_pipe.tokenizer, text_encoder=pipe.prior_pipe.text_encoder, **embedding_args)
embeddings_providers.append(provider)
no_mask_provider = EmbeddingsProvider(padding_attention_mask_value=1 if "sote" in pipe.sd_checkpoint_info.name.lower() else 0, tokenizer=pipe.prior_pipe.tokenizer, text_encoder=pipe.prior_pipe.text_encoder, **embedding_args)
embeddings_providers.append(no_mask_provider)
elif getattr(pipe, "tokenizer", None) is not None and getattr(pipe, "text_encoder", None) is not None:
if pipe.text_encoder.__class__.__name__.startswith('CLIP'):
sd_models.move_model(pipe.text_encoder, devices.device, force=True)
provider = EmbeddingsProvider(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, **embedding_args)
embeddings_providers.append(provider)
if getattr(pipe, "tokenizer_2", None) is not None and getattr(pipe, "text_encoder_2", None) is not None:
if pipe.text_encoder_2.__class__.__name__.startswith('CLIP'):
sd_models.move_model(pipe.text_encoder_2, devices.device, force=True)
provider = EmbeddingsProvider(tokenizer=pipe.tokenizer_2, text_encoder=pipe.text_encoder_2, **embedding_args)
embeddings_providers.append(provider)
if getattr(pipe, "tokenizer_3", None) is not None and getattr(pipe, "text_encoder_3", None) is not None:
if pipe.text_encoder_3.__class__.__name__.startswith('CLIP'):
sd_models.move_model(pipe.text_encoder_3, devices.device, force=True)
provider = EmbeddingsProvider(tokenizer=pipe.tokenizer_3, text_encoder=pipe.text_encoder_3, **embedding_args)
embeddings_providers.append(provider)
return embeddings_providers
def pad_to_same_length(pipe, embeds, empty_embedding_providers=None):
if not hasattr(pipe, 'encode_prompt') and ('StableCascade' not in pipe.__class__.__name__):
return embeds
device = devices.device
if shared.opts.diffusers_zeros_prompt_pad or 'StableDiffusion3' in pipe.__class__.__name__:
empty_embed = [torch.zeros((1, 77, embeds[0].shape[2]), device=device, dtype=embeds[0].dtype)]
else:
try:
if 'StableCascade' in pipe.__class__.__name__:
empty_embed = empty_embedding_providers[0].get_embeddings_for_weighted_prompt_fragments(text_batch=[[""]], fragment_weights_batch=[[1]], should_return_tokens=False, device=device)
empty_embed = [empty_embed]
else:
empty_embed = pipe.encode_prompt("")
except TypeError: # SD1.5
empty_embed = pipe.encode_prompt("", device, 1, False)
max_token_count = max([embed.shape[1] for embed in embeds])
repeats = max_token_count - min([embed.shape[1] for embed in embeds])
empty_batched = empty_embed[0].to(embeds[0].device).repeat(embeds[0].shape[0], repeats // empty_embed[0].shape[1], 1)
for i, embed in enumerate(embeds):
if embed.shape[1] < max_token_count:
embed = torch.cat([embed, empty_batched], dim=1)
embeds[i] = embed
return embeds
def split_prompts(pipe, prompt, SD3 = False):
if prompt.find("TE2:") != -1:
prompt, prompt2 = prompt.split("TE2:")
else:
prompt2 = prompt
if prompt.find("TE3:") != -1:
prompt, prompt3 = prompt.split("TE3:")
elif prompt2.find("TE3:") != -1:
prompt2, prompt3 = prompt2.split("TE3:")
else:
prompt3 = prompt
if prompt.find("TE4:") != -1:
prompt, prompt4 = prompt.split("TE4:")
elif prompt2.find("TE4:") != -1:
prompt2, prompt4 = prompt2.split("TE4:")
elif prompt3.find("TE4:") != -1:
prompt3, prompt4 = prompt3.split("TE4:")
else:
prompt4 = prompt
prompt = prompt.strip()
prompt2 = " " if prompt2.strip() == "" else prompt2.strip()
prompt3 = " " if prompt3.strip() == "" else prompt3.strip()
prompt4 = " " if prompt4.strip() == "" else prompt4.strip()
if SD3 and prompt3 != " ":
ps, _ws = get_prompts_with_weights(pipe, prompt3)
prompt3 = " ".join(ps)
return prompt, prompt2, prompt3, prompt4
def get_weighted_text_embeddings(pipe, prompt: str = "", neg_prompt: str = "", clip_skip: int = None):
device = devices.device
if prompt is None:
prompt = ''
if neg_prompt is None:
neg_prompt = ''
SD3 = bool(hasattr(pipe, 'text_encoder_3') and not hasattr(pipe, 'text_encoder_4'))
prompt, prompt_2, prompt_3, prompt_4 = split_prompts(pipe, prompt, SD3)
neg_prompt, neg_prompt_2, neg_prompt_3, neg_prompt_4 = split_prompts(pipe, neg_prompt, SD3)
if "Flux" in pipe.__class__.__name__: # clip is only used for the pooled embeds
prompt_embeds, pooled_prompt_embeds, _ = pipe.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=1)
return prompt_embeds, pooled_prompt_embeds, None, None, None, None # no negative support
if "Chroma" in pipe.__class__.__name__: # does not use clip and has no pooled embeds
prompt_embeds, _, prompt_attention_mask, negative_prompt_embeds, _, negative_prompt_attention_mask = pipe.encode_prompt(prompt=prompt, negative_prompt=neg_prompt, device=device, num_images_per_prompt=1)
return prompt_embeds, None, prompt_attention_mask, negative_prompt_embeds, None, negative_prompt_attention_mask
if "HiDreamImage" in pipe.__class__.__name__: # clip is only used for the pooled embeds
prompt_embeds_t5, negative_prompt_embeds_t5, prompt_embeds_llama3, negative_prompt_embeds_llama3, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, prompt_4=prompt_4,
negative_prompt=neg_prompt, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, negative_prompt_4=neg_prompt_4,
device=device, num_images_per_prompt=1,
)
prompt_embeds = [prompt_embeds_t5, prompt_embeds_llama3]
negative_prompt_embeds = [negative_prompt_embeds_t5, negative_prompt_embeds_llama3]
return prompt_embeds, pooled_prompt_embeds, None, negative_prompt_embeds, negative_pooled_prompt_embeds, None
if prompt != prompt_2:
ps = [get_prompts_with_weights(pipe, p) for p in [prompt, prompt_2]]
ns = [get_prompts_with_weights(pipe, p) for p in [neg_prompt, neg_prompt_2]]
else:
ps = 2 * [get_prompts_with_weights(pipe, prompt)]
ns = 2 * [get_prompts_with_weights(pipe, neg_prompt)]
positives, positive_weights = zip(*ps)
negatives, negative_weights = zip(*ns)
if hasattr(pipe, "tokenizer_2") and not hasattr(pipe, "tokenizer"):
positives.pop(0)
positive_weights.pop(0)
negatives.pop(0)
negative_weights.pop(0)
embedding_providers = prepare_embedding_providers(pipe, clip_skip)
if len(embedding_providers) == 0:
shared.log.error("Prompt encode: cannot find text encoder in model")
return None, None, None, None, None, None
empty_embedding_providers = None
if 'StableCascade' in pipe.__class__.__name__:
empty_embedding_providers = [embedding_providers[1]]
embedding_providers = [embedding_providers[0]]
prompt_embeds = []
negative_prompt_embeds = []
pooled_prompt_embeds = []
negative_pooled_prompt_embeds = []
for i in range(len(embedding_providers)):
if i >= len(positives): # te may be missing/unloaded
break
t0 = time.time()
text = list(positives[i])
weights = list(positive_weights[i])
text.append('BREAK')
weights.append(-1)
provider_embed = []
ptokens = 0
while 'BREAK' in text:
pos = text.index('BREAK')
debug(f'Prompt: section="{text[:pos]}" len={len(text[:pos])} weights={weights[:pos]}')
if len(text[:pos]) > 0:
embed, ptokens = embedding_providers[i].get_embeddings_for_weighted_prompt_fragments(text_batch=[text[:pos]], fragment_weights_batch=[weights[:pos]], device=device, should_return_tokens=True)
provider_embed.append(embed)
text = text[pos + 1:]
weights = weights[pos + 1:]
prompt_embeds.append(torch.cat(provider_embed, dim=1))
# negative prompt has no keywords
if shared.opts.diffusers_zeros_prompt_pad and len(negatives[i]) == 1 and negatives[i][0] in {"", " "}:
embed, ntokens = torch.zeros_like(embed), torch.zeros_like(ptokens)
else:
embed, ntokens = embedding_providers[i].get_embeddings_for_weighted_prompt_fragments(text_batch=[negatives[i]], fragment_weights_batch=[negative_weights[i]], device=device, should_return_tokens=True)
negative_prompt_embeds.append(embed)
debug(f'Prompt: unpadded={prompt_embeds[0].shape} TE{i+1} ptokens={torch.count_nonzero(ptokens)} ntokens={torch.count_nonzero(ntokens)} time={(time.time() - t0):.3f}')
if SD3:
t0 = time.time()
pooled_prompt_embeds.append(embedding_providers[0].get_pooled_embeddings(texts=positives[0] if len(positives[0]) == 1 else [" ".join(positives[0])], device=device))
pooled_prompt_embeds.append(embedding_providers[1].get_pooled_embeddings(texts=positives[-1] if len(positives[-1]) == 1 else [" ".join(positives[-1])], device=device))
negative_pooled_prompt_embeds.append(embedding_providers[0].get_pooled_embeddings(texts=negatives[0] if len(negatives[0]) == 1 else [" ".join(negatives[0])], device=device))
negative_pooled_prompt_embeds.append(embedding_providers[1].get_pooled_embeddings(texts=negatives[-1] if len(negatives[-1]) == 1 else [" ".join(negatives[-1])], device=device))
pooled_prompt_embeds = torch.cat(pooled_prompt_embeds, dim=-1)
negative_pooled_prompt_embeds = torch.cat(negative_pooled_prompt_embeds, dim=-1)
debug(f'Prompt: pooled={pooled_prompt_embeds[0].shape} time={(time.time() - t0):.3f}')
elif prompt_embeds[-1].shape[-1] > 768:
t0 = time.time()
if shared.opts.te_pooled_embeds:
pooled_prompt_embeds = embedding_providers[-1].text_encoder.text_projection(prompt_embeds[-1][
torch.arange(prompt_embeds[-1].shape[0], device=device),
(ptokens.to(dtype=torch.int, device=device) == 49407)
.int()
.argmax(dim=-1),
])
negative_pooled_prompt_embeds = embedding_providers[-1].text_encoder.text_projection(negative_prompt_embeds[-1][
torch.arange(negative_prompt_embeds[-1].shape[0], device=device),
(ntokens.to(dtype=torch.int, device=device) == 49407)
.int()
.argmax(dim=-1),
])
else:
try:
pooled_prompt_embeds = embedding_providers[-1].get_pooled_embeddings(texts=[prompt_2], device=device) if prompt_embeds[-1].shape[-1] > 768 else None
if shared.opts.diffusers_zeros_prompt_pad and neg_prompt_2 in {"", " "}:
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) if negative_prompt_embeds[-1].shape[-1] > 768 else None
else:
negative_pooled_prompt_embeds = embedding_providers[-1].get_pooled_embeddings(texts=[neg_prompt_2], device=device) if negative_prompt_embeds[-1].shape[-1] > 768 else None
except Exception:
pooled_prompt_embeds = None
negative_pooled_prompt_embeds = None
debug(f'Prompt: pooled shape={pooled_prompt_embeds[0].shape if pooled_prompt_embeds is not None else None} time={(time.time() - t0):.3f}')
prompt_embeds = torch.cat(prompt_embeds, dim=-1) if len(prompt_embeds) > 1 else prompt_embeds[0]
negative_prompt_embeds = torch.cat(negative_prompt_embeds, dim=-1) if len(negative_prompt_embeds) > 1 else \
negative_prompt_embeds[0]
if pooled_prompt_embeds == []:
pooled_prompt_embeds = None
if negative_pooled_prompt_embeds == []:
negative_pooled_prompt_embeds = None
debug(f'Prompt: positive={prompt_embeds.shape if prompt_embeds is not None else None} pooled={pooled_prompt_embeds.shape if pooled_prompt_embeds is not None else None} negative={negative_prompt_embeds.shape if negative_prompt_embeds is not None else None} pooled={negative_pooled_prompt_embeds.shape if negative_pooled_prompt_embeds is not None else None}')
if prompt_embeds.shape[1] != negative_prompt_embeds.shape[1]:
[prompt_embeds, negative_prompt_embeds] = pad_to_same_length(pipe, [prompt_embeds, negative_prompt_embeds], empty_embedding_providers=empty_embedding_providers)
if SD3:
device = devices.device
t5_prompt_embed = pipe._get_t5_prompt_embeds( # pylint: disable=protected-access
prompt=prompt_3,
num_images_per_prompt=prompt_embeds.shape[0],
device=device,
)
prompt_embeds = torch.nn.functional.pad(
prompt_embeds, (0, t5_prompt_embed.shape[-1] - prompt_embeds.shape[-1])
).to(device)
prompt_embeds = torch.cat([prompt_embeds, t5_prompt_embed], dim=-2)
t5_negative_prompt_embed = pipe._get_t5_prompt_embeds( # pylint: disable=protected-access
prompt=neg_prompt_3,
num_images_per_prompt=prompt_embeds.shape[0],
device=device,
)
negative_prompt_embeds = torch.nn.functional.pad(
negative_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_prompt_embeds.shape[-1])
).to(device)
negative_prompt_embeds = torch.cat([negative_prompt_embeds, t5_negative_prompt_embed], dim=-2)
return prompt_embeds, pooled_prompt_embeds, None, negative_prompt_embeds, negative_pooled_prompt_embeds, None
def get_xhinker_text_embeddings(pipe, prompt: str = "", neg_prompt: str = "", clip_skip: int = None):
is_sd3 = hasattr(pipe, 'text_encoder_3')
prompt, prompt_2, _prompt_3, _ = split_prompts(pipe, prompt, is_sd3)
neg_prompt, neg_prompt_2, _neg_prompt_3, _ = split_prompts(pipe, neg_prompt, is_sd3)
try:
prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)
neg_prompt = pipe.maybe_convert_prompt(neg_prompt, pipe.tokenizer)
prompt_2 = pipe.maybe_convert_prompt(prompt_2, pipe.tokenizer_2)
neg_prompt_2 = pipe.maybe_convert_prompt(neg_prompt_2, pipe.tokenizer_2)
except Exception:
pass
prompt_embed = positive_pooled = negative_embed = negative_pooled = prompt_attention_mask = negative_prompt_attention_mask = None
te1_device, te2_device, te3_device = None, None, None
if hasattr(pipe, "text_encoder") and pipe.text_encoder.device != devices.device:
te1_device = pipe.text_encoder.device
sd_models.move_model(pipe.text_encoder, devices.device, force=True)
if hasattr(pipe, "text_encoder_2") and pipe.text_encoder_2.device != devices.device:
te2_device = pipe.text_encoder_2.device
sd_models.move_model(pipe.text_encoder_2, devices.device, force=True)
if hasattr(pipe, "text_encoder_3") and pipe.text_encoder_3.device != devices.device:
te3_device = pipe.text_encoder_3.device
sd_models.move_model(pipe.text_encoder_3, devices.device, force=True)
if 'StableDiffusion3' in pipe.__class__.__name__:
prompt_embed, negative_embed, positive_pooled, negative_pooled = get_weighted_text_embeddings_sd3(pipe=pipe, prompt=prompt, neg_prompt=neg_prompt, use_t5_encoder=bool(pipe.text_encoder_3))
elif 'Flux' in pipe.__class__.__name__:
prompt_embed, positive_pooled = get_weighted_text_embeddings_flux1(pipe=pipe, prompt=prompt, prompt2=prompt_2, device=devices.device)
elif 'Chroma' in pipe.__class__.__name__:
prompt_embed, prompt_attention_mask, negative_embed, negative_prompt_attention_mask = get_weighted_text_embeddings_chroma(pipe=pipe, prompt=prompt, neg_prompt=neg_prompt, device=devices.device)
elif 'XL' in pipe.__class__.__name__:
prompt_embed, negative_embed, positive_pooled, negative_pooled = get_weighted_text_embeddings_sdxl_2p(pipe=pipe, prompt=prompt, prompt_2=prompt_2, neg_prompt=neg_prompt, neg_prompt_2=neg_prompt_2)
else:
prompt_embed, negative_embed = get_weighted_text_embeddings_sd15(pipe=pipe, prompt=prompt, neg_prompt=neg_prompt, clip_skip=clip_skip)
if te1_device is not None:
sd_models.move_model(pipe.text_encoder, te1_device, force=True)
if te2_device is not None:
sd_models.move_model(pipe.text_encoder_2, te1_device, force=True)
if te3_device is not None:
sd_models.move_model(pipe.text_encoder_3, te1_device, force=True)
return prompt_embed, positive_pooled, prompt_attention_mask, negative_embed, negative_pooled, negative_prompt_attention_mask