mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
172 lines
5.8 KiB
Python
172 lines
5.8 KiB
Python
# https://github.com/somanchiu/ReSwapper/blob/GAN/Image.py
|
|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
input_std = 255.0
|
|
input_mean = 0.0
|
|
|
|
|
|
def get_emap():
|
|
emap = np.load("modules/face/reswapper_emap.npy") # https://github.com/somanchiu/ReSwapper/blob/GAN/emap.npy
|
|
return emap
|
|
|
|
|
|
def postprocess_face(face_tensor):
|
|
face_tensor = face_tensor.squeeze().cpu().detach()
|
|
face_np = (face_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
|
face_np = cv2.cvtColor(face_np, cv2.COLOR_RGB2BGR)
|
|
return face_np
|
|
|
|
def getBlob(aimg, input_size = (128, 128)):
|
|
blob = cv2.dnn.blobFromImage(aimg, 1.0 / input_std, input_size, (input_mean, input_mean, input_mean), swapRB=True)
|
|
return blob
|
|
|
|
|
|
def getLatent(source_face):
|
|
latent = source_face.normed_embedding.reshape((1,-1))
|
|
emap = get_emap()
|
|
latent = np.dot(latent, emap)
|
|
latent /= np.linalg.norm(latent)
|
|
return latent
|
|
|
|
|
|
def blend_swapped_image(swapped_face, target_image, M):
|
|
h, w = target_image.shape[:2]
|
|
M_inv = cv2.invertAffineTransform(M)
|
|
warped_face = cv2.warpAffine(swapped_face, M_inv, (w, h),borderValue=0.0)
|
|
img_white = np.full((swapped_face.shape[0], swapped_face.shape[1]), 255, dtype=np.float32)
|
|
img_mask = cv2.warpAffine(img_white, M_inv, (w, h), borderValue=0.0)
|
|
img_mask[img_mask > 20] = 255 # pylint: disable=unsupported-assignment-operation
|
|
mask_h_inds, mask_w_inds = np.where(img_mask == 255)
|
|
if len(mask_h_inds) > 0 and len(mask_w_inds) > 0: # safety check
|
|
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
|
|
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
|
|
mask_size = int(np.sqrt(mask_h * mask_w))
|
|
k = max(mask_size // 10, 10)
|
|
kernel = np.ones((k, k), np.uint8)
|
|
img_mask = cv2.erode(img_mask, kernel, iterations=1)
|
|
k = max(mask_size // 20, 5)
|
|
kernel_size = (k, k)
|
|
blur_size = tuple(2 * i + 1 for i in kernel_size)
|
|
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
|
|
img_mask = img_mask / 255.0
|
|
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
|
|
result = img_mask * warped_face + (1 - img_mask) * target_image.astype(np.float32)
|
|
result = result.astype(np.uint8)
|
|
return result
|
|
|
|
|
|
def drawKeypoints(image, keypoints, colorBGR, keypointsRadius=2):
|
|
for kp in keypoints:
|
|
x, y = int(kp[0]), int(kp[1])
|
|
cv2.circle(image, (x, y), radius=keypointsRadius, color=colorBGR, thickness=-1) # BGR format, -1 means filled circle
|
|
|
|
|
|
### https://github.com/somanchiu/ReSwapper/blob/GAN/face_align.py
|
|
|
|
arcface_dst = np.array(
|
|
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
|
[41.5493, 92.3655], [70.7299, 92.2041]],
|
|
dtype=np.float32)
|
|
|
|
|
|
def estimate_norm(lmk, image_size=112,mode='arcface'): # pylint: disable=unused-argument
|
|
from skimage import transform as trans
|
|
if image_size%112==0:
|
|
ratio = float(image_size)/112.0
|
|
diff_x = 0
|
|
else:
|
|
ratio = float(image_size)/128.0
|
|
diff_x = 8.0*ratio
|
|
ratio = float(image_size)/112.0
|
|
diff_x = 0
|
|
dst = arcface_dst * ratio
|
|
dst[:,0] += diff_x
|
|
if image_size%112==0:
|
|
ratio = float(image_size)/112.0
|
|
diff_x = 0
|
|
else:
|
|
ratio = float(image_size)/128.0
|
|
diff_x = 8.0*ratio
|
|
dst = arcface_dst * ratio
|
|
dst[:,0] += diff_x
|
|
tform = trans.SimilarityTransform()
|
|
tform.estimate(lmk, dst)
|
|
M = tform.params[0:2, :]
|
|
return M
|
|
|
|
|
|
def norm_crop(img, landmark, image_size=112, mode='arcface'):
|
|
M = estimate_norm(landmark, image_size, mode)
|
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
|
return warped
|
|
|
|
|
|
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
|
|
M = estimate_norm(landmark, image_size, mode)
|
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
|
return warped, M
|
|
|
|
|
|
def square_crop(im, S):
|
|
if im.shape[0] > im.shape[1]:
|
|
height = S
|
|
width = int(float(im.shape[1]) / im.shape[0] * S)
|
|
scale = float(S) / im.shape[0]
|
|
else:
|
|
width = S
|
|
height = int(float(im.shape[0]) / im.shape[1] * S)
|
|
scale = float(S) / im.shape[1]
|
|
resized_im = cv2.resize(im, (width, height))
|
|
det_im = np.zeros((S, S, 3), dtype=np.uint8)
|
|
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
|
|
return det_im, scale
|
|
|
|
|
|
def transform(data, center, output_size, scale, rotation):
|
|
from skimage import transform as trans
|
|
scale_ratio = scale
|
|
rot = float(rotation) * np.pi / 180.0
|
|
t1 = trans.SimilarityTransform(scale=scale_ratio)
|
|
cx = center[0] * scale_ratio
|
|
cy = center[1] * scale_ratio
|
|
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
|
|
t3 = trans.SimilarityTransform(rotation=rot)
|
|
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
|
|
t = t1 + t2 + t3 + t4
|
|
M = t.params[0:2]
|
|
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
|
|
return cropped, M
|
|
|
|
|
|
def trans_points2d(pts, M):
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
|
for i in range(pts.shape[0]):
|
|
pt = pts[i]
|
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
|
new_pt = np.dot(M, new_pt)
|
|
new_pts[i] = new_pt[0:2]
|
|
return new_pts
|
|
|
|
|
|
def trans_points3d(pts, M):
|
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
|
|
#print(scale)
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
|
for i in range(pts.shape[0]):
|
|
pt = pts[i]
|
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
|
new_pt = np.dot(M, new_pt)
|
|
#print('new_pt', new_pt.shape, new_pt)
|
|
new_pts[i][0:2] = new_pt[0:2]
|
|
new_pts[i][2] = pts[i][2] * scale
|
|
return new_pts
|
|
|
|
|
|
def trans_points(pts, M):
|
|
if pts.shape[1] == 2:
|
|
return trans_points2d(pts, M)
|
|
else:
|
|
return trans_points3d(pts, M)
|