# https://github.com/somanchiu/ReSwapper/blob/GAN/Image.py import cv2 import numpy as np input_std = 255.0 input_mean = 0.0 def get_emap(): emap = np.load("modules/face/reswapper_emap.npy") # https://github.com/somanchiu/ReSwapper/blob/GAN/emap.npy return emap def postprocess_face(face_tensor): face_tensor = face_tensor.squeeze().cpu().detach() face_np = (face_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8) face_np = cv2.cvtColor(face_np, cv2.COLOR_RGB2BGR) return face_np def getBlob(aimg, input_size = (128, 128)): blob = cv2.dnn.blobFromImage(aimg, 1.0 / input_std, input_size, (input_mean, input_mean, input_mean), swapRB=True) return blob def getLatent(source_face): latent = source_face.normed_embedding.reshape((1,-1)) emap = get_emap() latent = np.dot(latent, emap) latent /= np.linalg.norm(latent) return latent def blend_swapped_image(swapped_face, target_image, M): h, w = target_image.shape[:2] M_inv = cv2.invertAffineTransform(M) warped_face = cv2.warpAffine(swapped_face, M_inv, (w, h),borderValue=0.0) img_white = np.full((swapped_face.shape[0], swapped_face.shape[1]), 255, dtype=np.float32) img_mask = cv2.warpAffine(img_white, M_inv, (w, h), borderValue=0.0) img_mask[img_mask > 20] = 255 # pylint: disable=unsupported-assignment-operation mask_h_inds, mask_w_inds = np.where(img_mask == 255) if len(mask_h_inds) > 0 and len(mask_w_inds) > 0: # safety check mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) mask_size = int(np.sqrt(mask_h * mask_w)) k = max(mask_size // 10, 10) kernel = np.ones((k, k), np.uint8) img_mask = cv2.erode(img_mask, kernel, iterations=1) k = max(mask_size // 20, 5) kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) img_mask = img_mask / 255.0 img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1]) result = img_mask * warped_face + (1 - img_mask) * target_image.astype(np.float32) result = result.astype(np.uint8) return result def drawKeypoints(image, keypoints, colorBGR, keypointsRadius=2): for kp in keypoints: x, y = int(kp[0]), int(kp[1]) cv2.circle(image, (x, y), radius=keypointsRadius, color=colorBGR, thickness=-1) # BGR format, -1 means filled circle ### https://github.com/somanchiu/ReSwapper/blob/GAN/face_align.py arcface_dst = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) def estimate_norm(lmk, image_size=112,mode='arcface'): # pylint: disable=unused-argument from skimage import transform as trans if image_size%112==0: ratio = float(image_size)/112.0 diff_x = 0 else: ratio = float(image_size)/128.0 diff_x = 8.0*ratio ratio = float(image_size)/112.0 diff_x = 0 dst = arcface_dst * ratio dst[:,0] += diff_x if image_size%112==0: ratio = float(image_size)/112.0 diff_x = 0 else: ratio = float(image_size)/128.0 diff_x = 8.0*ratio dst = arcface_dst * ratio dst[:,0] += diff_x tform = trans.SimilarityTransform() tform.estimate(lmk, dst) M = tform.params[0:2, :] return M def norm_crop(img, landmark, image_size=112, mode='arcface'): M = estimate_norm(landmark, image_size, mode) warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) return warped def norm_crop2(img, landmark, image_size=112, mode='arcface'): M = estimate_norm(landmark, image_size, mode) warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) return warped, M def square_crop(im, S): if im.shape[0] > im.shape[1]: height = S width = int(float(im.shape[1]) / im.shape[0] * S) scale = float(S) / im.shape[0] else: width = S height = int(float(im.shape[0]) / im.shape[1] * S) scale = float(S) / im.shape[1] resized_im = cv2.resize(im, (width, height)) det_im = np.zeros((S, S, 3), dtype=np.uint8) det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im return det_im, scale def transform(data, center, output_size, scale, rotation): from skimage import transform as trans scale_ratio = scale rot = float(rotation) * np.pi / 180.0 t1 = trans.SimilarityTransform(scale=scale_ratio) cx = center[0] * scale_ratio cy = center[1] * scale_ratio t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) t3 = trans.SimilarityTransform(rotation=rot) t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) t = t1 + t2 + t3 + t4 M = t.params[0:2] cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) return cropped, M def trans_points2d(pts, M): new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) new_pts[i] = new_pt[0:2] return new_pts def trans_points3d(pts, M): scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) #print(scale) new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) #print('new_pt', new_pt.shape, new_pt) new_pts[i][0:2] = new_pt[0:2] new_pts[i][2] = pts[i][2] * scale return new_pts def trans_points(pts, M): if pts.shape[1] == 2: return trans_points2d(pts, M) else: return trans_points3d(pts, M)