mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
252 lines
14 KiB
Python
252 lines
14 KiB
Python
import os
|
|
import json
|
|
import torch
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
|
|
from .common import dtype_dict, use_tensorwise_fp8_matmul, check_torch_compile, conv_types, linear_types
|
|
from .quantizer import SDNQConfig, sdnq_post_load_quant, prepare_weight_for_matmul, prepare_svd_for_matmul, get_quant_args_from_config
|
|
from .forward import get_forward_func
|
|
from .file_loader import load_files
|
|
|
|
|
|
def get_module_names(model: ModelMixin) -> list:
|
|
modules_names = model._internal_dict.keys() # pylint: disable=protected-access
|
|
modules_names = [m for m in modules_names if not m.startswith("_")]
|
|
modules_names = [m for m in modules_names if isinstance(getattr(model, m, None), torch.nn.Module)]
|
|
modules_names = sorted(set(modules_names))
|
|
return modules_names
|
|
|
|
|
|
def unset_config_on_save(quantization_config: SDNQConfig) -> SDNQConfig:
|
|
quantization_config.quantization_device = None
|
|
quantization_config.return_device = None
|
|
quantization_config.non_blocking = False
|
|
quantization_config.add_skip_keys = False
|
|
return quantization_config
|
|
|
|
|
|
def save_sdnq_model(model: ModelMixin, model_path: str, max_shard_size: str = "5GB", is_pipeline: bool = False, sdnq_config: SDNQConfig = None) -> None:
|
|
if is_pipeline:
|
|
for module_name in get_module_names(model):
|
|
module = getattr(model, module_name, None)
|
|
if hasattr(module, "config") and hasattr(module.config, "quantization_config") and isinstance(module.config.quantization_config, SDNQConfig):
|
|
module.config.quantization_config = unset_config_on_save(module.config.quantization_config)
|
|
if hasattr(module, "quantization_config") and isinstance(module.quantization_config, SDNQConfig):
|
|
module.quantization_config = unset_config_on_save(module.quantization_config)
|
|
else:
|
|
if hasattr(model, "config") and hasattr(model.config, "quantization_config") and isinstance(model.config.quantization_config, SDNQConfig):
|
|
model.config.quantization_config = unset_config_on_save(model.config.quantization_config)
|
|
if hasattr(model, "quantization_config") and isinstance(model.quantization_config, SDNQConfig):
|
|
model.quantization_config = unset_config_on_save(model.quantization_config)
|
|
|
|
model.save_pretrained(model_path, max_shard_size=max_shard_size) # actual save
|
|
|
|
quantization_config_path = os.path.join(model_path, "quantization_config.json")
|
|
if sdnq_config is not None: # if provided, save global config
|
|
sdnq_config = unset_config_on_save(sdnq_config)
|
|
sdnq_config.to_json_file(quantization_config_path)
|
|
|
|
if is_pipeline:
|
|
for module_name in get_module_names(model): # save per-module config if available
|
|
module = getattr(model, module_name, None)
|
|
if module is None:
|
|
continue
|
|
module_quantization_config_path = os.path.join(model_path, module_name, "quantization_config.json")
|
|
if hasattr(module, "quantization_config") and isinstance(module.quantization_config, SDNQConfig):
|
|
module.quantization_config.to_json_file(module_quantization_config_path)
|
|
elif hasattr(module, "config") and hasattr(module.config, "quantization_config") and isinstance(module.config.quantization_config, SDNQConfig):
|
|
module.config.quantization_config.to_json_file(module_quantization_config_path)
|
|
elif sdnq_config is None:
|
|
if hasattr(model, "quantization_config") and isinstance(model.quantization_config, SDNQConfig):
|
|
model.quantization_config.to_json_file(quantization_config_path)
|
|
elif hasattr(model, "config") and hasattr(model.config, "quantization_config") and isinstance(model.config.quantization_config, SDNQConfig):
|
|
model.config.quantization_config.to_json_file(quantization_config_path)
|
|
|
|
|
|
def load_sdnq_model(model_path: str, model_cls: ModelMixin = None, file_name: str = None, dtype: torch.dtype = None, device: torch.device = "cpu", dequantize_fp32: bool = None, use_quantized_matmul: bool = None, model_config: dict = None, quantization_config: dict = None, load_method: str = "safetensors") -> ModelMixin:
|
|
from accelerate import init_empty_weights
|
|
|
|
with init_empty_weights():
|
|
model_config_path = os.path.join(model_path, "config.json")
|
|
quantization_config_path = os.path.join(model_path, "quantization_config.json")
|
|
|
|
if model_config is None:
|
|
if os.path.exists(model_config_path):
|
|
with open(model_config_path, "r", encoding="utf-8") as f:
|
|
model_config = json.load(f)
|
|
else:
|
|
model_config = {}
|
|
|
|
if quantization_config is None:
|
|
if os.path.exists(quantization_config_path):
|
|
with open(quantization_config_path, "r", encoding="utf-8") as f:
|
|
quantization_config = json.load(f)
|
|
else:
|
|
quantization_config = model_config.get("quantization_config", None)
|
|
if quantization_config is None:
|
|
raise ValueError(f"Cannot determine quantization_config for {model_path}, please provide quantization_config argument")
|
|
|
|
if model_cls is None:
|
|
import transformers
|
|
import diffusers
|
|
class_name = model_config.get("_class_name", None) or model_config.get("architectures", None)
|
|
if isinstance(class_name, list):
|
|
class_name = class_name[0]
|
|
if class_name is not None:
|
|
model_cls = getattr(diffusers, class_name, None) or getattr(transformers, class_name, None)
|
|
if model_cls is None:
|
|
raise ValueError(f"Cannot determine model class for {model_path}, please provide model_cls argument")
|
|
|
|
if hasattr(model_cls, "load_config") and hasattr(model_cls, "from_config"):
|
|
config = model_cls.load_config(model_path)
|
|
model = model_cls.from_config(config)
|
|
elif hasattr(model_cls, "_from_config"):
|
|
config = transformers.AutoConfig.from_pretrained(model_path)
|
|
model = model_cls(config)
|
|
else:
|
|
model = model_cls(**model_config)
|
|
|
|
model = sdnq_post_load_quant(model, torch_dtype=dtype, add_skip_keys=False, use_dynamic_quantization=False, **get_quant_args_from_config(quantization_config))
|
|
|
|
key_mapping = getattr(model, "_checkpoint_conversion_mapping", None)
|
|
files = []
|
|
|
|
if file_name:
|
|
files.append(os.path.join(model_path, file_name))
|
|
else:
|
|
all_files = os.listdir(model_path)
|
|
files = sorted([os.path.join(model_path, f) for f in all_files if f.endswith(".safetensors")])
|
|
|
|
state_dict = load_files(files, key_mapping=key_mapping, device=device, method=load_method)
|
|
|
|
if isinstance(getattr(model, "_tied_weights_keys", None), dict):
|
|
for key, value in model._tied_weights_keys.items(): # pylint: disable=protected-access
|
|
if value in state_dict.keys() and key not in state_dict.keys():
|
|
state_dict[key] = state_dict[value]
|
|
else:
|
|
# older transformers case, handle known models manually
|
|
if model.__class__.__name__ in {"T5EncoderModel", "UMT5EncoderModel"} and "encoder.embed_tokens.weight" not in state_dict.keys():
|
|
state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"]
|
|
elif model.__class__.__name__ in {"Qwen3ForCausalLM"} and "lm_head.weight" not in state_dict.keys():
|
|
if "model.embed_tokens.weight" in state_dict.keys():
|
|
state_dict["lm_head.weight"] = state_dict["model.embed_tokens.weight"]
|
|
|
|
model.load_state_dict(state_dict, assign=True)
|
|
del state_dict
|
|
|
|
model = post_process_model(model)
|
|
if (dtype is not None) or (dequantize_fp32 is not None) or (use_quantized_matmul is not None):
|
|
model = apply_sdnq_options_to_model(model, dtype=dtype, dequantize_fp32=dequantize_fp32, use_quantized_matmul=use_quantized_matmul)
|
|
return model
|
|
|
|
|
|
def post_process_model(model):
|
|
has_children = list(model.children())
|
|
if not has_children:
|
|
return model
|
|
for module_name, module in model.named_children():
|
|
if hasattr(module, "sdnq_dequantizer"):
|
|
module.weight.requires_grad_(False)
|
|
module.scale.requires_grad_(False)
|
|
if module.zero_point is not None:
|
|
module.zero_point.requires_grad_(False)
|
|
if module.sdnq_dequantizer.use_quantized_matmul and not module.sdnq_dequantizer.re_quantize_for_matmul:
|
|
module.weight.data = prepare_weight_for_matmul(module.weight)
|
|
if module.svd_up is not None:
|
|
module.svd_up.requires_grad_(False)
|
|
module.svd_down.requires_grad_(False)
|
|
module.svd_up.data, module.svd_down.data = prepare_svd_for_matmul(module.svd_up, module.svd_down, module.sdnq_dequantizer.use_quantized_matmul)
|
|
setattr(model, module_name, module)
|
|
else:
|
|
setattr(model, module_name, post_process_model(module))
|
|
return model
|
|
|
|
|
|
def apply_sdnq_options_to_module(model, dtype: torch.dtype = None, dequantize_fp32: bool = None, use_quantized_matmul: bool = None):
|
|
has_children = list(model.children())
|
|
if not has_children:
|
|
if dtype is not None and getattr(model, "dtype", torch.float32) != torch.float32:
|
|
model = model.to(dtype=dtype)
|
|
return model
|
|
for module_name, module in model.named_children():
|
|
if hasattr(module, "sdnq_dequantizer"):
|
|
layer_class_name = module.original_class.__name__
|
|
current_use_quantized_matmul = use_quantized_matmul
|
|
if current_use_quantized_matmul:
|
|
if layer_class_name in conv_types:
|
|
output_channel_size, channel_size = module.sdnq_dequantizer.original_shape[:2]
|
|
elif layer_class_name in linear_types:
|
|
output_channel_size, channel_size = module.sdnq_dequantizer.original_shape
|
|
else:
|
|
current_use_quantized_matmul = False
|
|
current_use_quantized_matmul = current_use_quantized_matmul and channel_size >= 32 and output_channel_size >= 32 # pylint: disable=possibly-used-before-assignment
|
|
current_use_quantized_matmul = current_use_quantized_matmul and output_channel_size % 16 == 0 and channel_size % 16 == 0 # pylint: disable=possibly-used-before-assignment
|
|
|
|
if dtype is not None and module.sdnq_dequantizer.result_dtype != torch.float32:
|
|
module.sdnq_dequantizer.result_dtype = dtype
|
|
|
|
upcast_scale = bool(
|
|
dequantize_fp32
|
|
or dtype_dict[module.sdnq_dequantizer.weights_dtype]["num_bits"] > 8
|
|
or (
|
|
(current_use_quantized_matmul or (current_use_quantized_matmul is None and module.sdnq_dequantizer.use_quantized_matmul))
|
|
and not dtype_dict[module.sdnq_dequantizer.quantized_matmul_dtype]["is_integer"]
|
|
and (not use_tensorwise_fp8_matmul or dtype_dict[module.sdnq_dequantizer.quantized_matmul_dtype]["num_bits"] == 16)
|
|
)
|
|
)
|
|
scale_dtype = torch.float32 if upcast_scale or dequantize_fp32 or (dequantize_fp32 is None and module.scale.dtype == torch.float32) else module.sdnq_dequantizer.result_dtype
|
|
|
|
module.scale.data = module.scale.to(dtype=scale_dtype)
|
|
if module.zero_point is not None:
|
|
module.zero_point.data = module.zero_point.to(dtype=scale_dtype)
|
|
if module.svd_up is not None:
|
|
module.svd_up.data = module.svd_up.to(dtype=scale_dtype)
|
|
module.svd_down.data = module.svd_down.to(dtype=scale_dtype)
|
|
|
|
if current_use_quantized_matmul is not None and current_use_quantized_matmul != module.sdnq_dequantizer.use_quantized_matmul:
|
|
if not module.sdnq_dequantizer.re_quantize_for_matmul and not dtype_dict[module.sdnq_dequantizer.weights_dtype]["is_packed"]:
|
|
module.scale.t_()
|
|
module.weight.t_()
|
|
if current_use_quantized_matmul:
|
|
module.weight.data = prepare_weight_for_matmul(module.weight)
|
|
else:
|
|
module.scale.data = module.scale.contiguous()
|
|
module.weight.data = module.weight.contiguous()
|
|
if module.svd_up is not None:
|
|
module.svd_up.data, module.svd_down.data = prepare_svd_for_matmul(module.svd_up.t_(), module.svd_down.t_(), current_use_quantized_matmul)
|
|
module.sdnq_dequantizer.use_quantized_matmul = current_use_quantized_matmul
|
|
module.forward_func = get_forward_func(module.original_class.__name__, module.sdnq_dequantizer.quantized_matmul_dtype, current_use_quantized_matmul)
|
|
setattr(model, module_name, module)
|
|
else:
|
|
setattr(model, module_name, apply_sdnq_options_to_module(module, dtype=dtype, dequantize_fp32=dequantize_fp32, use_quantized_matmul=use_quantized_matmul))
|
|
return model
|
|
|
|
|
|
def apply_sdnq_options_to_model(model, dtype: torch.dtype = None, dequantize_fp32: bool = None, use_quantized_matmul: bool = None):
|
|
if use_quantized_matmul and not check_torch_compile():
|
|
raise RuntimeError("SDNQ Quantized MatMul requires a working Triton install.")
|
|
model = apply_sdnq_options_to_module(model, dtype=dtype, dequantize_fp32=dequantize_fp32, use_quantized_matmul=use_quantized_matmul)
|
|
if hasattr(model, "quantization_config"):
|
|
if use_quantized_matmul is not None:
|
|
model.quantization_config.use_quantized_matmul = use_quantized_matmul
|
|
if dequantize_fp32 is not None:
|
|
model.quantization_config.dequantize_fp32 = dequantize_fp32
|
|
if hasattr(model, "config"):
|
|
try:
|
|
if hasattr(model.config, "quantization_config"):
|
|
if use_quantized_matmul is not None:
|
|
model.config.quantization_config.use_quantized_matmul = use_quantized_matmul
|
|
if dequantize_fp32 is not None:
|
|
model.config.quantization_config.dequantize_fp32 = dequantize_fp32
|
|
except Exception:
|
|
pass
|
|
try:
|
|
if hasattr(model.config, "get") and model.config.get("quantization_config", None) is not None:
|
|
if use_quantized_matmul is not None:
|
|
model.config["quantization_config"].use_quantized_matmul = use_quantized_matmul
|
|
if dequantize_fp32 is not None:
|
|
model.config["quantization_config"].dequantize_fp32 = dequantize_fp32
|
|
except Exception:
|
|
pass
|
|
return model
|