import os import json import torch from diffusers.models.modeling_utils import ModelMixin from .common import dtype_dict, use_tensorwise_fp8_matmul, check_torch_compile, conv_types, linear_types from .quantizer import SDNQConfig, sdnq_post_load_quant, prepare_weight_for_matmul, prepare_svd_for_matmul, get_quant_args_from_config from .forward import get_forward_func from .file_loader import load_files def get_module_names(model: ModelMixin) -> list: modules_names = model._internal_dict.keys() # pylint: disable=protected-access modules_names = [m for m in modules_names if not m.startswith("_")] modules_names = [m for m in modules_names if isinstance(getattr(model, m, None), torch.nn.Module)] modules_names = sorted(set(modules_names)) return modules_names def unset_config_on_save(quantization_config: SDNQConfig) -> SDNQConfig: quantization_config.quantization_device = None quantization_config.return_device = None quantization_config.non_blocking = False quantization_config.add_skip_keys = False return quantization_config def save_sdnq_model(model: ModelMixin, model_path: str, max_shard_size: str = "5GB", is_pipeline: bool = False, sdnq_config: SDNQConfig = None) -> None: if is_pipeline: for module_name in get_module_names(model): module = getattr(model, module_name, None) if hasattr(module, "config") and hasattr(module.config, "quantization_config") and isinstance(module.config.quantization_config, SDNQConfig): module.config.quantization_config = unset_config_on_save(module.config.quantization_config) if hasattr(module, "quantization_config") and isinstance(module.quantization_config, SDNQConfig): module.quantization_config = unset_config_on_save(module.quantization_config) else: if hasattr(model, "config") and hasattr(model.config, "quantization_config") and isinstance(model.config.quantization_config, SDNQConfig): model.config.quantization_config = unset_config_on_save(model.config.quantization_config) if hasattr(model, "quantization_config") and isinstance(model.quantization_config, SDNQConfig): model.quantization_config = unset_config_on_save(model.quantization_config) model.save_pretrained(model_path, max_shard_size=max_shard_size) # actual save quantization_config_path = os.path.join(model_path, "quantization_config.json") if sdnq_config is not None: # if provided, save global config sdnq_config = unset_config_on_save(sdnq_config) sdnq_config.to_json_file(quantization_config_path) if is_pipeline: for module_name in get_module_names(model): # save per-module config if available module = getattr(model, module_name, None) if module is None: continue module_quantization_config_path = os.path.join(model_path, module_name, "quantization_config.json") if hasattr(module, "quantization_config") and isinstance(module.quantization_config, SDNQConfig): module.quantization_config.to_json_file(module_quantization_config_path) elif hasattr(module, "config") and hasattr(module.config, "quantization_config") and isinstance(module.config.quantization_config, SDNQConfig): module.config.quantization_config.to_json_file(module_quantization_config_path) elif sdnq_config is None: if hasattr(model, "quantization_config") and isinstance(model.quantization_config, SDNQConfig): model.quantization_config.to_json_file(quantization_config_path) elif hasattr(model, "config") and hasattr(model.config, "quantization_config") and isinstance(model.config.quantization_config, SDNQConfig): model.config.quantization_config.to_json_file(quantization_config_path) def load_sdnq_model(model_path: str, model_cls: ModelMixin = None, file_name: str = None, dtype: torch.dtype = None, device: torch.device = "cpu", dequantize_fp32: bool = None, use_quantized_matmul: bool = None, model_config: dict = None, quantization_config: dict = None, load_method: str = "safetensors") -> ModelMixin: from accelerate import init_empty_weights with init_empty_weights(): model_config_path = os.path.join(model_path, "config.json") quantization_config_path = os.path.join(model_path, "quantization_config.json") if model_config is None: if os.path.exists(model_config_path): with open(model_config_path, "r", encoding="utf-8") as f: model_config = json.load(f) else: model_config = {} if quantization_config is None: if os.path.exists(quantization_config_path): with open(quantization_config_path, "r", encoding="utf-8") as f: quantization_config = json.load(f) else: quantization_config = model_config.get("quantization_config", None) if quantization_config is None: raise ValueError(f"Cannot determine quantization_config for {model_path}, please provide quantization_config argument") if model_cls is None: import transformers import diffusers class_name = model_config.get("_class_name", None) or model_config.get("architectures", None) if isinstance(class_name, list): class_name = class_name[0] if class_name is not None: model_cls = getattr(diffusers, class_name, None) or getattr(transformers, class_name, None) if model_cls is None: raise ValueError(f"Cannot determine model class for {model_path}, please provide model_cls argument") if hasattr(model_cls, "load_config") and hasattr(model_cls, "from_config"): config = model_cls.load_config(model_path) model = model_cls.from_config(config) elif hasattr(model_cls, "_from_config"): config = transformers.AutoConfig.from_pretrained(model_path) model = model_cls(config) else: model = model_cls(**model_config) model = sdnq_post_load_quant(model, torch_dtype=dtype, add_skip_keys=False, use_dynamic_quantization=False, **get_quant_args_from_config(quantization_config)) key_mapping = getattr(model, "_checkpoint_conversion_mapping", None) files = [] if file_name: files.append(os.path.join(model_path, file_name)) else: all_files = os.listdir(model_path) files = sorted([os.path.join(model_path, f) for f in all_files if f.endswith(".safetensors")]) state_dict = load_files(files, key_mapping=key_mapping, device=device, method=load_method) if isinstance(getattr(model, "_tied_weights_keys", None), dict): for key, value in model._tied_weights_keys.items(): # pylint: disable=protected-access if value in state_dict.keys() and key not in state_dict.keys(): state_dict[key] = state_dict[value] else: # older transformers case, handle known models manually if model.__class__.__name__ in {"T5EncoderModel", "UMT5EncoderModel"} and "encoder.embed_tokens.weight" not in state_dict.keys(): state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"] elif model.__class__.__name__ in {"Qwen3ForCausalLM"} and "lm_head.weight" not in state_dict.keys(): if "model.embed_tokens.weight" in state_dict.keys(): state_dict["lm_head.weight"] = state_dict["model.embed_tokens.weight"] model.load_state_dict(state_dict, assign=True) del state_dict model = post_process_model(model) if (dtype is not None) or (dequantize_fp32 is not None) or (use_quantized_matmul is not None): model = apply_sdnq_options_to_model(model, dtype=dtype, dequantize_fp32=dequantize_fp32, use_quantized_matmul=use_quantized_matmul) return model def post_process_model(model): has_children = list(model.children()) if not has_children: return model for module_name, module in model.named_children(): if hasattr(module, "sdnq_dequantizer"): module.weight.requires_grad_(False) module.scale.requires_grad_(False) if module.zero_point is not None: module.zero_point.requires_grad_(False) if module.sdnq_dequantizer.use_quantized_matmul and not module.sdnq_dequantizer.re_quantize_for_matmul: module.weight.data = prepare_weight_for_matmul(module.weight) if module.svd_up is not None: module.svd_up.requires_grad_(False) module.svd_down.requires_grad_(False) module.svd_up.data, module.svd_down.data = prepare_svd_for_matmul(module.svd_up, module.svd_down, module.sdnq_dequantizer.use_quantized_matmul) setattr(model, module_name, module) else: setattr(model, module_name, post_process_model(module)) return model def apply_sdnq_options_to_module(model, dtype: torch.dtype = None, dequantize_fp32: bool = None, use_quantized_matmul: bool = None): has_children = list(model.children()) if not has_children: if dtype is not None and getattr(model, "dtype", torch.float32) != torch.float32: model = model.to(dtype=dtype) return model for module_name, module in model.named_children(): if hasattr(module, "sdnq_dequantizer"): layer_class_name = module.original_class.__name__ current_use_quantized_matmul = use_quantized_matmul if current_use_quantized_matmul: if layer_class_name in conv_types: output_channel_size, channel_size = module.sdnq_dequantizer.original_shape[:2] elif layer_class_name in linear_types: output_channel_size, channel_size = module.sdnq_dequantizer.original_shape else: current_use_quantized_matmul = False current_use_quantized_matmul = current_use_quantized_matmul and channel_size >= 32 and output_channel_size >= 32 # pylint: disable=possibly-used-before-assignment current_use_quantized_matmul = current_use_quantized_matmul and output_channel_size % 16 == 0 and channel_size % 16 == 0 # pylint: disable=possibly-used-before-assignment if dtype is not None and module.sdnq_dequantizer.result_dtype != torch.float32: module.sdnq_dequantizer.result_dtype = dtype upcast_scale = bool( dequantize_fp32 or dtype_dict[module.sdnq_dequantizer.weights_dtype]["num_bits"] > 8 or ( (current_use_quantized_matmul or (current_use_quantized_matmul is None and module.sdnq_dequantizer.use_quantized_matmul)) and not dtype_dict[module.sdnq_dequantizer.quantized_matmul_dtype]["is_integer"] and (not use_tensorwise_fp8_matmul or dtype_dict[module.sdnq_dequantizer.quantized_matmul_dtype]["num_bits"] == 16) ) ) scale_dtype = torch.float32 if upcast_scale or dequantize_fp32 or (dequantize_fp32 is None and module.scale.dtype == torch.float32) else module.sdnq_dequantizer.result_dtype module.scale.data = module.scale.to(dtype=scale_dtype) if module.zero_point is not None: module.zero_point.data = module.zero_point.to(dtype=scale_dtype) if module.svd_up is not None: module.svd_up.data = module.svd_up.to(dtype=scale_dtype) module.svd_down.data = module.svd_down.to(dtype=scale_dtype) if current_use_quantized_matmul is not None and current_use_quantized_matmul != module.sdnq_dequantizer.use_quantized_matmul: if not module.sdnq_dequantizer.re_quantize_for_matmul and not dtype_dict[module.sdnq_dequantizer.weights_dtype]["is_packed"]: module.scale.t_() module.weight.t_() if current_use_quantized_matmul: module.weight.data = prepare_weight_for_matmul(module.weight) else: module.scale.data = module.scale.contiguous() module.weight.data = module.weight.contiguous() if module.svd_up is not None: module.svd_up.data, module.svd_down.data = prepare_svd_for_matmul(module.svd_up.t_(), module.svd_down.t_(), current_use_quantized_matmul) module.sdnq_dequantizer.use_quantized_matmul = current_use_quantized_matmul module.forward_func = get_forward_func(module.original_class.__name__, module.sdnq_dequantizer.quantized_matmul_dtype, current_use_quantized_matmul) setattr(model, module_name, module) else: setattr(model, module_name, apply_sdnq_options_to_module(module, dtype=dtype, dequantize_fp32=dequantize_fp32, use_quantized_matmul=use_quantized_matmul)) return model def apply_sdnq_options_to_model(model, dtype: torch.dtype = None, dequantize_fp32: bool = None, use_quantized_matmul: bool = None): if use_quantized_matmul and not check_torch_compile(): raise RuntimeError("SDNQ Quantized MatMul requires a working Triton install.") model = apply_sdnq_options_to_module(model, dtype=dtype, dequantize_fp32=dequantize_fp32, use_quantized_matmul=use_quantized_matmul) if hasattr(model, "quantization_config"): if use_quantized_matmul is not None: model.quantization_config.use_quantized_matmul = use_quantized_matmul if dequantize_fp32 is not None: model.quantization_config.dequantize_fp32 = dequantize_fp32 if hasattr(model, "config"): try: if hasattr(model.config, "quantization_config"): if use_quantized_matmul is not None: model.config.quantization_config.use_quantized_matmul = use_quantized_matmul if dequantize_fp32 is not None: model.config.quantization_config.dequantize_fp32 = dequantize_fp32 except Exception: pass try: if hasattr(model.config, "get") and model.config.get("quantization_config", None) is not None: if use_quantized_matmul is not None: model.config["quantization_config"].use_quantized_matmul = use_quantized_matmul if dequantize_fp32 is not None: model.config["quantization_config"].dequantize_fp32 = dequantize_fp32 except Exception: pass return model