1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/sd_detect.py
CalamitousFelicitousness fe99d3fe5d feat: add FLUX.2 Klein model support
Add support for FLUX.2 Klein distilled models (4B and 9B variants):

- Add pipeline loader for Flux2KleinPipeline
- Add model detection for 'flux.2' + 'klein' patterns
- Add pipeline mapping in shared_items
- Add shared Qwen3ForCausalLM text encoder handling:
  - 4B variants use Z-Image-Turbo's Qwen3-8B
  - 9B variants use FLUX.2-klein-9B's Qwen3-14B
- Add reference entries for distilled (4B, 9B) and base models
- Update diffusers commit for Flux2KleinPipeline support
2026-01-16 01:35:20 +00:00

291 lines
12 KiB
Python

import os
import time
import torch
import diffusers
from modules import shared, shared_items, devices, errors, model_tools
debug_load = os.environ.get('SD_LOAD_DEBUG', None)
def guess_by_size(fn, current_guess):
new_guess = None
if os.path.isfile(fn) and fn.endswith('.safetensors'):
size = round(os.path.getsize(fn) / 1024 / 1024)
if (size > 0 and size < 128):
shared.log.warning(f'Model size smaller than expected: file="{fn}" size={size} MB')
elif (size >= 316 and size <= 324) or (size >= 156 and size <= 164): # 320 or 160
shared.log.warning(f'Model detected as VAE model, but attempting to load as model: file="{fn}" size={size} MB')
new_guess = 'VAE'
elif (size >= 2002 and size <= 2038): # 2032
new_guess = 'Stable Diffusion 1.5'
elif (size >= 3138 and size <= 3142): #3140
new_guess = 'Stable Diffusion XL'
elif (size >= 3361 and size <= 3369): # 3368
new_guess = 'Stable Diffusion Upscale'
elif (size >= 4891 and size <= 4899): # 4897
new_guess = 'Stable Diffusion XL Inpaint'
elif (size >= 4970 and size <= 4976): # 4973
new_guess = 'Stable Diffusion 2' # SD v2 but could be eps or v-prediction
elif (size >= 5791 and size <= 5799): # 5795
new_guess = 'Stable Diffusion XL Refiner'
elif (size > 5692 and size < 5698) or (size > 4134 and size < 4138) or (size > 10362 and size < 10366) or (size > 15028 and size < 15228):
new_guess = 'Stable Diffusion 3'
elif (size >= 6420 and size <= 7220): # 6420, IustriousRedux is 6541, monkrenRealisticINT_v10 is 7217
new_guess = 'Stable Diffusion XL'
elif (size >= 9791 and size <= 9799): # 9794
new_guess = 'Stable Diffusion XL Instruct'
elif (size >= 18414 and size <= 18420): # sd35-large aio
new_guess = 'Stable Diffusion 3'
elif (size >= 20000 and size <= 40000):
new_guess = 'FLUX'
if debug_load:
shared.log.trace(f'Autodetect: method=size file="{fn}" size={size} previous="{current_guess}" current="{new_guess}"')
return new_guess or current_guess
def guess_by_name(fn, current_guess):
new_guess = None
if 'instaflow' in fn.lower():
new_guess = 'InstaFlow'
elif 'segmoe' in fn.lower():
new_guess = 'SegMoE'
elif 'hunyuandit' in fn.lower():
new_guess = 'HunyuanDiT'
elif 'hdm-xut' in fn.lower():
new_guess = 'hdm'
elif 'pixart-xl' in fn.lower():
new_guess = 'PixArt Alpha'
elif 'stable-diffusion-3' in fn.lower():
new_guess = 'Stable Diffusion 3'
elif 'stable-cascade' in fn.lower() or 'stablecascade' in fn.lower() or 'wuerstchen3' in fn.lower() or ('sotediffusion' in fn.lower() and "v2" in fn.lower()):
if devices.dtype == torch.float16:
shared.log.warning('Stable Cascade does not support Float16')
new_guess = 'Stable Cascade'
elif 'pixart-sigma' in fn.lower():
new_guess = 'PixArt Sigma'
elif 'sana' in fn.lower():
new_guess = 'Sana'
elif 'lumina-next' in fn.lower():
new_guess = 'Lumina-Next'
elif 'lumina-image-2' in fn.lower():
new_guess = 'Lumina 2'
elif 'kolors' in fn.lower():
new_guess = 'Kolors'
elif 'auraflow' in fn.lower() or 'pony-v7' in fn.lower():
new_guess = 'AuraFlow'
elif 'cogview3' in fn.lower():
new_guess = 'CogView 3'
elif 'cogview4' in fn.lower():
new_guess = 'CogView 4'
elif 'meissonic' in fn.lower():
new_guess = 'Meissonic'
elif 'monetico' in fn.lower():
new_guess = 'Monetico'
elif 'omnigen2' in fn.lower():
new_guess = 'OmniGen2'
elif 'omnigen' in fn.lower():
new_guess = 'OmniGen'
elif 'sd3' in fn.lower():
new_guess = 'Stable Diffusion 3'
elif 'hidream' in fn.lower():
new_guess = 'HiDream'
elif 'chroma' in fn.lower() and 'xl' not in fn.lower():
new_guess = 'Chroma'
elif 'flux.2' in fn.lower() and 'klein' in fn.lower():
new_guess = 'FLUX2 Klein'
elif 'flux.2' in fn.lower():
new_guess = 'FLUX2'
elif 'flux' in fn.lower() or 'flex.1' in fn.lower():
size = round(os.path.getsize(fn) / 1024 / 1024) if os.path.isfile(fn) else 0
if size > 11000 and size < 16000:
shared.log.warning(f'Model detected as FLUX UNET model, but attempting to load a base model: file="{fn}" size={size} MB')
new_guess = 'FLUX'
elif 'flex.2' in fn.lower():
new_guess = 'FLEX'
elif 'cosmos-predict2' in fn.lower():
new_guess = 'Cosmos'
elif 'f-lite' in fn.lower():
new_guess = 'FLite'
elif 'wan' in fn.lower():
new_guess = 'WanAI'
if 'chronoedit' in fn.lower():
new_guess = 'ChronoEdit'
elif 'bria' in fn.lower():
new_guess = 'Bria'
elif 'qwen' in fn.lower():
new_guess = 'Qwen'
elif 'nextstep' in fn.lower():
new_guess = 'NextStep'
elif 'kandinsky-2-1' in fn.lower():
new_guess = 'Kandinsky 2.1'
elif 'kandinsky-2-2' in fn.lower():
new_guess = 'Kandinsky 2.2'
elif 'kandinsky-3' in fn.lower():
new_guess = 'Kandinsky 3.0'
elif 'kandinsky-5.0' in fn.lower():
new_guess = 'Kandinsky 5.0'
elif 'hunyuanimage3' in fn.lower() or 'hunyuanimage-3' in fn.lower():
new_guess = 'HunyuanImage3'
elif 'hunyuanimage' in fn.lower():
new_guess = 'HunyuanImage'
elif 'x-omni' in fn.lower():
new_guess = 'X-Omni'
elif 'sdxl-turbo' in fn.lower() or 'stable-diffusion-xl' in fn.lower():
new_guess = 'Stable Diffusion XL'
elif 'stable-video-diffusion' in fn.lower():
new_guess = 'StableVideoDiffusion'
elif 'prx-' in fn.lower():
new_guess = 'PRX'
elif 'gemini-' in fn.lower() and 'image' in fn.lower():
new_guess = 'NanoBanana'
elif 'z-image' in fn.lower() or 'z_image' in fn.lower():
new_guess = 'Z-Image'
elif 'longcat-image' in fn.lower():
new_guess = 'LongCat'
elif 'ovis-image' in fn.lower():
new_guess = 'Ovis-Image'
elif 'glm-image' in fn.lower():
new_guess = 'GLM-Image'
if debug_load:
shared.log.trace(f'Autodetect: method=name file="{fn}" previous="{current_guess}" current="{new_guess}"')
return new_guess or current_guess
def guess_by_diffusers(fn, current_guess):
exclude_by_name = ['ostris/Flex.2-preview'] # pipeline may be misleading
if not os.path.isdir(fn):
return current_guess, None
index = os.path.join(fn, 'model_index.json')
if os.path.exists(index) and os.path.isfile(index):
index = shared.readfile(index, silent=True, as_type="dict")
name = index.get('_name_or_path', None)
if name is not None and name in exclude_by_name:
return current_guess, None
cls = index.get('_class_name', None)
if cls is not None:
pipeline = getattr(diffusers, cls, None)
if pipeline is None:
pipeline = cls
if callable(pipeline):
is_quant = False
for folder in os.listdir(fn):
folder = os.path.join(fn, folder)
if is_quant:
break
if folder.endswith('quantization_config.json'):
is_quant = True
break
if folder.endswith('config.json'):
quantization_config = shared.readfile(folder, silent=True, as_type="dict").get("quantization_config", None)
if quantization_config is not None:
is_quant = True
break
if os.path.isdir(folder):
for f in os.listdir(folder):
f = os.path.join(folder, f)
if f.endswith('quantization_config.json'):
is_quant = True
break
if f.endswith('config.json'):
quantization_config = shared.readfile(f, silent=True, as_type="dict").get("quantization_config", None)
if quantization_config is not None:
is_quant = True
break
pipelines = shared_items.get_pipelines()
for k, v in pipelines.items():
if v is not None and v.__name__ == pipeline.__name__:
if is_quant:
k = f'{k} SDNQ'
if debug_load:
shared.log.trace(f'Autodetect: method=diffusers file="{fn}" previous="{current_guess}" current="{k}"')
return k, v
return current_guess, None
def guess_variant(fn, current_guess):
new_guess = None
if 'inpaint' in fn.lower():
if current_guess == 'Stable Diffusion':
new_guess = 'Stable Diffusion Inpaint'
elif current_guess == 'Stable Diffusion XL':
new_guess = 'Stable Diffusion XL Inpaint'
elif 'instruct' in fn.lower():
if current_guess == 'Stable Diffusion':
new_guess = 'Stable Diffusion Instruct'
elif current_guess == 'Stable Diffusion XL':
new_guess = 'Stable Diffusion XL Instruct'
if debug_load:
shared.log.trace(f'Autodetect: method=variant file="{fn}" previous="{current_guess}" current="{new_guess}"')
return new_guess or current_guess
def detect_pipeline(f: str, op: str = 'model'):
guess = shared.opts.diffusers_pipeline
pipeline = None
if guess == 'Autodetect':
try:
guess = 'Stable Diffusion XL' if ('XL' in f.upper() or 'SDNQ' in f.upper()) else 'Stable Diffusion' # set default guess
guess = guess_by_size(f, guess)
guess = guess_by_name(f, guess)
guess, pipeline = guess_by_diffusers(f, guess)
guess = guess_variant(f, guess)
pipeline = shared_items.get_pipelines().get(guess, None) if pipeline is None else pipeline
shared.log.info(f'Autodetect {op}: detect="{guess}" class={getattr(pipeline, "__name__", None)} file="{f}"')
if debug_load is not None:
t0 = time.time()
keys = model_tools.get_safetensor_keys(f)
if keys is not None and len(keys) > 0:
modules = model_tools.list_to_dict(keys)
modules = model_tools.remove_entries_after_depth(modules, 3)
lst = model_tools.list_compact(keys)
t1 = time.time()
shared.log.debug(f'Autodetect: modules={modules} list={lst} time={t1-t0:.2f}')
except Exception as e:
shared.log.error(f'Autodetect {op}: file="{f}" {e}')
if debug_load:
errors.display(e, f'Load {op}: {f}')
return None, None
else:
try:
pipeline = shared_items.get_pipelines().get(guess, None) if pipeline is None else pipeline
shared.log.info(f'Load {op}: detect="{guess}" class={getattr(pipeline, "__name__", None)} file="{f}"')
except Exception as e:
shared.log.error(f'Load {op}: detect="{guess}" file="{f}" {e}')
if pipeline is None:
pipeline = diffusers.DiffusionPipeline
return pipeline, guess
def get_load_config(model_file, model_type, config_type='yaml'):
model_type = model_type.removesuffix(' SDNQ')
if config_type == 'yaml':
yaml = os.path.splitext(model_file)[0] + '.yaml'
if os.path.exists(yaml):
return yaml
if model_type == 'Stable Diffusion':
return 'configs/v1-inference.yaml'
if model_type == 'Stable Diffusion XL':
return 'configs/sd_xl_base.yaml'
if model_type == 'Stable Diffusion XL Refiner':
return 'configs/sd_xl_refiner.yaml'
if model_type == 'Stable Diffusion 2':
return None # dont know if its eps or v so let diffusers sort it out
# return 'configs/v2-inference-512-base.yaml'
# return 'configs/v2-inference-768-v.yaml'
elif config_type == 'json':
if not shared.opts.diffuser_cache_config:
return None
if model_type == 'Stable Diffusion':
return 'configs/sd15'
if model_type == 'Stable Diffusion XL':
return 'configs/sdxl'
if model_type == 'Stable Diffusion XL Refiner':
return 'configs/sdxl-refiner'
if model_type == 'Stable Diffusion 3':
return 'configs/sd3'
if model_type == 'FLUX':
return 'configs/flux'
return None