1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/README.md
Patrick von Platen 60f5a643f1 Update README.md
2022-06-07 17:04:32 +02:00

161 lines
6.3 KiB
Markdown

# Diffusers
## Definitions
**Models**: Single neural network that models p_ΞΈ(x_t-1|x_t) and is trained to β€œdenoise” to image
*Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet*
![model_diff_1_50](https://user-images.githubusercontent.com/23423619/171610307-dab0cd8b-75da-4d4e-9f5a-5922072e2bb5.png)
**Schedulers**: Algorithm to sample noise schedule for both *training* and *inference*. Defines alpha and beta schedule, timesteps, etc..
*Example: Gaussian DDPM, DDIM, PMLS, DEIN*
![sampling](https://user-images.githubusercontent.com/23423619/171608981-3ad05953-a684-4c82-89f8-62a459147a07.png)
![training](https://user-images.githubusercontent.com/23423619/171608964-b3260cce-e6b4-4841-959d-7d8ba4b8d1b2.png)
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP
*Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E*
![imagen](https://user-images.githubusercontent.com/23423619/171609001-c3f2c1c9-f597-4a16-9843-749bf3f9431c.png)
## 1. `diffusers` as a central modular diffusion and sampler library
`diffusers` is more modularized than `transformers`. The idea is that researchers and engineers can use only parts of the library easily for the own use cases.
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
Both models and scredulers should be load- and saveable from the Hub.
Example:
```python
import torch
from diffusers import UNetModel, GaussianDDPMScheduler
import PIL
import numpy as np
generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# 1. Load models
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
# 2. Sample gaussian noise
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
# 3. Denoise
for t in reversed(range(len(scheduler))):
# i) define coefficients for time step t
clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
# ii) predict noise residual
with torch.no_grad():
noise_residual = model(image, t)
# iii) compute predicted image from residual
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
pred_mean = torch.clamp(pred_mean, -1, 1)
prev_image = clipped_coeff * pred_mean + image_coeff * image
# iv) sample variance
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
sampled_prev_image = prev_image + prev_variance
image = sampled_prev_image
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("test.png")
```
## 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
Example:
```python
from diffusers import DiffusionPipeline
import PIL.Image
import numpy as np
# load model and scheduler
ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom")
# run pipeline in inference (sample random noise and denoise)
image = ddpm()
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("test.png")
```
## Library structure:
```
β”œβ”€β”€ models
β”‚Β Β  β”œβ”€β”€ audio
β”‚Β Β  β”‚Β Β  └── fastdiff
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ modeling_fastdiff.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  β”‚Β Β  └── run_fastdiff.py
β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β  └── vision
β”‚Β Β  β”œβ”€β”€ dalle2
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ modeling_dalle2.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  β”‚Β Β  └── run_dalle2.py
β”‚Β Β  β”œβ”€β”€ ddpm
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ example.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ modeling_ddpm.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  β”‚Β Β  └── run_ddpm.py
β”‚Β Β  β”œβ”€β”€ glide
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ modeling_glide.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ modeling_vqvae.py.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  β”‚Β Β  └── run_glide.py
β”‚Β Β  β”œβ”€β”€ imagen
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ modeling_dalle2.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  β”‚Β Β  └── run_dalle2.py
β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β  └── latent_diffusion
β”‚Β Β  β”œβ”€β”€ modeling_latent_diffusion.py
β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  └── run_latent_diffusion.py
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ README.md
β”œβ”€β”€ setup.cfg
β”œβ”€β”€ setup.py
β”œβ”€β”€ src
β”‚Β Β  └── diffusers
β”‚Β Β  β”œβ”€β”€ configuration_utils.py
β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β  β”œβ”€β”€ modeling_utils.py
β”‚Β Β  β”œβ”€β”€ models
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ unet_glide.py
β”‚Β Β  β”‚Β Β  └── unet.py
β”‚Β Β  β”œβ”€β”€ pipeline_utils.py
β”‚Β Β  └── schedulers
β”‚Β Β  β”œβ”€β”€ gaussian_ddpm.py
β”‚Β Β  β”œβ”€β”€ __init__.py
β”œβ”€β”€ tests
β”‚Β Β  └── test_modeling_utils.py
```