1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/benchmarks/README.md
Sayak Paul e6639fef70 [benchmarks] overhaul benchmarks (#11565)
* start overhauling the benchmarking suite.

* fixes

* fixes

* checking.

* checking

* fixes.

* error handling and logging.

* add flops and params.

* add more models.

* utility to fire execution of all benchmarking scripts.

* utility to push to the hub.

* push utility improvement

* seems to be working.

* okay

* add torchprofile dep.

* remove total gpu memory

* fixes

* fix

* need a big gpu

* better

* what's happening.

* okay

* separate requirements and make it nightly.

* add db population script.

* update secret name

* update secret.

* population db update

* disable db population for now.

* change to every monday

* Update .github/workflows/benchmark.yml

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* quality improvements.

* reparate hub upload step.

* repository

* remove csv

* check

* update

* update

* threading.

* update

* update

* updaye

* update

* update

* update

* remove peft dep

* upgrade runner.

* fix

* fixes

* fix merging csvs.

* push dataset to the Space repo for analysis.

* warm up.

* add a readme

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* address feedback

* Apply suggestions from code review

* disable db workflow.

* update to bi weekly.

* enable population

* enable

* updaye

* update

* metadata

* fix

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
2025-07-04 11:04:17 +05:30

69 lines
2.5 KiB
Markdown

# Diffusers Benchmarks
Welcome to Diffusers Benchmarks. These benchmarks are use to obtain latency and memory information of the most popular models across different scenarios such as:
* Base case i.e., when using `torch.bfloat16` and `torch.nn.functional.scaled_dot_product_attention`.
* Base + `torch.compile()`
* NF4 quantization
* Layerwise upcasting
Instead of full diffusion pipelines, only the forward pass of the respective model classes (such as `FluxTransformer2DModel`) is tested with the real checkpoints (such as `"black-forest-labs/FLUX.1-dev"`).
The entrypoint to running all the currently available benchmarks is in `run_all.py`. However, one can run the individual benchmarks, too, e.g., `python benchmarking_flux.py`. It should produce a CSV file containing various information about the benchmarks run.
The benchmarks are run on a weekly basis and the CI is defined in [benchmark.yml](../.github/workflows/benchmark.yml).
## Running the benchmarks manually
First set up `torch` and install `diffusers` from the root of the directory:
```py
pip install -e ".[quality,test]"
```
Then make sure the other dependencies are installed:
```sh
cd benchmarks/
pip install -r requirements.txt
```
We need to be authenticated to access some of the checkpoints used during benchmarking:
```sh
huggingface-cli login
```
We use an L40 GPU with 128GB RAM to run the benchmark CI. As such, the benchmarks are configured to run on NVIDIA GPUs. So, make sure you have access to a similar machine (or modify the benchmarking scripts accordingly).
Then you can either launch the entire benchmarking suite by running:
```sh
python run_all.py
```
Or, you can run the individual benchmarks.
## Customizing the benchmarks
We define "scenarios" to cover the most common ways in which these models are used. You can
define a new scenario, modifying an existing benchmark file:
```py
BenchmarkScenario(
name=f"{CKPT_ID}-bnb-8bit",
model_cls=FluxTransformer2DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
"quantization_config": BitsAndBytesConfig(load_in_8bit=True),
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
)
```
You can also configure a new model-level benchmark and add it to the existing suite. To do so, just defining a valid benchmarking file like `benchmarking_flux.py` should be enough.
Happy benchmarking 🧨