1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/ko/tutorials/basic_training.mdx
Seongsu Park 8b18cd8e7f [Docs] Korean translation update (#4022)
* feat) optimization kr translation

* fix) typo, italic setting

* feat) dreambooth, text2image kr

* feat) lora kr

* fix) LoRA

* fix) fp16 fix

* fix) doc-builder style

* fix) fp16 ์ผ๋ถ€ ๋‹จ์–ด ์ˆ˜์ •

* fix) fp16 style fix

* fix) opt, training docs update

* merge conflict

* Fix community pipelines (#3266)

* Allow disabling torch 2_0 attention (#3273)

* Allow disabling torch 2_0 attention

* make style

* Update src/diffusers/models/attention.py

* Release: v0.16.1

* feat) toctree update

* feat) toctree update

* Fix custom releases (#3708)

* Fix custom releases

* make style

* Fix loading if unexpected keys are present (#3720)

* Fix loading

* make style

* Release: v0.17.0

* opt_overview

* commit

* Create pipeline_overview.mdx

* unconditional_image_generatoin_1stDraft

* โœจ Add translation for write_own_pipeline.mdx

* conditional-์ง์—ญ, ์–ธ์ปจ๋””์…”๋„

* unconditional_image_generation first draft

* reviese

* Update pipeline_overview.mdx

* revise-2

* โ™ป๏ธ translation fixed for write_own_pipeline.mdx

* complete translate basic_training.mdx

* other-formats.mdx ๋ฒˆ์—ญ ์™„๋ฃŒ

* fix tutorials/basic_training.mdx

* other-formats ์ˆ˜์ •

* inpaint ํ•œ๊ตญ์–ด ๋ฒˆ์—ญ

* depth2img translation

* translate training/adapt-a-model.mdx

* revised_all

* feedback taken

* using_safetensors.mdx_first_draft

* custom_pipeline_examples.mdx_first_draft

* img2img ํ•œ๊ธ€๋ฒˆ์—ญ ์™„๋ฃŒ

* tutorial_overview edit

* reusing_seeds

* torch2.0

* translate complete

* fix) ์šฉ์–ด ํ†ต์ผ ๊ทœ์•ฝ ๋ฐ˜์˜

* [fix] ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ˜์˜ํ•ด์„œ ๋ฒˆ์—ญ ๋ณด์ •

* ์˜คํƒˆ์ž ์ •์ • + ์ปจ๋ฒค์…˜ ์œ„๋ฐฐ๋œ ๋ถ€๋ถ„ ์ •์ •

* typo, style fix

* toctree update

* copyright fix

* toctree fix

* Update _toctree.yml

---------

Co-authored-by: Chanran Kim <seriousran@gmail.com>
Co-authored-by: apolinรกrio <joaopaulo.passos@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lee, Hongkyu <75282888+howsmyanimeprofilepicture@users.noreply.github.com>
Co-authored-by: hyeminan <adios9709@gmail.com>
Co-authored-by: movie5 <oyh5800@naver.com>
Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Jihwan Kim <cuchoco@naver.com>
Co-authored-by: jungwoo <boonkoonheart@gmail.com>
Co-authored-by: jjuun0 <jh061993@gmail.com>
Co-authored-by: szjung-test <93111772+szjung-test@users.noreply.github.com>
Co-authored-by: idra79haza <37795618+idra79haza@users.noreply.github.com>
Co-authored-by: howsmyanimeprofilepicture <howsmyanimeprofilepicture@gmail.com>
Co-authored-by: hoswmyanimeprofilepicture <hoswmyanimeprofilepicture@gmail.com>
2023-07-17 18:28:08 -07:00

406 lines
19 KiB
Plaintext

<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Diffusion ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ
Unconditional ์ด๋ฏธ์ง€ ์ƒ์„ฑ์€ ํ•™์Šต์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹๊ณผ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” diffusion ๋ชจ๋ธ์—์„œ ์ธ๊ธฐ ์žˆ๋Š” ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ๊ฐ€์žฅ ์ข‹์€ ๊ฒฐ๊ณผ๋Š” ํŠน์ • ๋ฐ์ดํ„ฐ์…‹์— ์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด [ํ—ˆ๋ธŒ](https://huggingface.co/search/full-text?q=unconditional-image-generation&type=model)์—์„œ ์ด๋Ÿฌํ•œ ๋งŽ์€ ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋งŒ์•ฝ ๋งˆ์Œ์— ๋“œ๋Š” ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์ฐพ์ง€ ๋ชปํ–ˆ๋‹ค๋ฉด, ์–ธ์ œ๋“ ์ง€ ์Šค์Šค๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!
์ด ํŠœํ† ๋ฆฌ์–ผ์€ ๋‚˜๋งŒ์˜ ๐Ÿฆ‹ ๋‚˜๋น„ ๐Ÿฆ‹๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด [Smithsonian Butterflies](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset) ๋ฐ์ดํ„ฐ์…‹์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์—์„œ [`UNet2DModel`] ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐ€๋ฅด์ณ์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
<Tip>
๐Ÿ’ก ์ด ํ•™์Šต ํŠœํ† ๋ฆฌ์–ผ์€ [Training with ๐Ÿงจ Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ๋…ธํŠธ๋ถ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. Diffusion ๋ชจ๋ธ์˜ ์ž‘๋™ ๋ฐฉ์‹ ๋ฐ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋…ธํŠธ๋ถ์„ ํ™•์ธํ•˜์„ธ์š”!
</Tip>
์‹œ์ž‘ ์ „์—, ๐Ÿค— Datasets์„ ๋ถˆ๋Ÿฌ์˜ค๊ณ  ์ „์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ์…‹์ด ์„ค์น˜๋˜์–ด ์žˆ๋Š”์ง€ ๋‹ค์ˆ˜ GPU์—์„œ ํ•™์Šต์„ ๊ฐ„์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๐Ÿค— Accelerate ๊ฐ€ ์„ค์น˜๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”. ๊ทธ ํ›„ ํ•™์Šต ๋ฉ”ํŠธ๋ฆญ์„ ์‹œ๊ฐํ™”ํ•˜๊ธฐ ์œ„ํ•ด [TensorBoard](https://www.tensorflow.org/tensorboard)๋ฅผ ๋˜ํ•œ ์„ค์น˜ํ•˜์„ธ์š”. (๋˜ํ•œ ํ•™์Šต ์ถ”์ ์„ ์œ„ํ•ด [Weights & Biases](https://docs.wandb.ai/)๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
```bash
!pip install diffusers[training]
```
์ปค๋ฎค๋‹ˆํ‹ฐ์— ๋ชจ๋ธ์„ ๊ณต์œ ํ•  ๊ฒƒ์„ ๊ถŒ์žฅํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด์„œ Hugging Face ๊ณ„์ •์— ๋กœ๊ทธ์ธ์„ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. (๊ณ„์ •์ด ์—†๋‹ค๋ฉด [์—ฌ๊ธฐ](https://hf.co/join)์—์„œ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.) ๋…ธํŠธ๋ถ์—์„œ ๋กœ๊ทธ์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ฉ”์‹œ์ง€๊ฐ€ ํ‘œ์‹œ๋˜๋ฉด ํ† ํฐ์„ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
๋˜๋Š” ํ„ฐ๋ฏธ๋„๋กœ ๋กœ๊ทธ์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```bash
huggingface-cli login
```
๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ๊ฐ€ ์ƒ๋‹นํžˆ ํฌ๊ธฐ ๋•Œ๋ฌธ์— [Git-LFS](https://git-lfs.com/)์—์„œ ๋Œ€์šฉ๋Ÿ‰ ํŒŒ์ผ์˜ ๋ฒ„์ „ ๊ด€๋ฆฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```bash
!sudo apt -qq install git-lfs
!git config --global credential.helper store
```
## ํ•™์Šต ๊ตฌ์„ฑ
ํŽธ์˜๋ฅผ ์œ„ํ•ด ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ํฌํ•จํ•œ `TrainingConfig` ํด๋ž˜์Šค๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค (์ž์œ ๋กญ๊ฒŒ ์กฐ์ • ๊ฐ€๋Šฅ):
```py
>>> from dataclasses import dataclass
>>> @dataclass
... class TrainingConfig:
... image_size = 128 # ์ƒ์„ฑ๋˜๋Š” ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„
... train_batch_size = 16
... eval_batch_size = 16 # ํ‰๊ฐ€ ๋™์•ˆ์— ์ƒ˜ํ”Œ๋งํ•  ์ด๋ฏธ์ง€ ์ˆ˜
... num_epochs = 50
... gradient_accumulation_steps = 1
... learning_rate = 1e-4
... lr_warmup_steps = 500
... save_image_epochs = 10
... save_model_epochs = 30
... mixed_precision = "fp16" # `no`๋Š” float32, ์ž๋™ ํ˜ผํ•ฉ ์ •๋ฐ€๋„๋ฅผ ์œ„ํ•œ `fp16`
... output_dir = "ddpm-butterflies-128" # ๋กœ์ปฌ ๋ฐ HF Hub์— ์ €์žฅ๋˜๋Š” ๋ชจ๋ธ๋ช…
... push_to_hub = True # ์ €์žฅ๋œ ๋ชจ๋ธ์„ HF Hub์— ์—…๋กœ๋“œํ• ์ง€ ์—ฌ๋ถ€
... hub_private_repo = False
... overwrite_output_dir = True # ๋…ธํŠธ๋ถ์„ ๋‹ค์‹œ ์‹คํ–‰ํ•  ๋•Œ ์ด์ „ ๋ชจ๋ธ์— ๋ฎ์–ด์”Œ์šธ์ง€
... seed = 0
>>> config = TrainingConfig()
```
## ๋ฐ์ดํ„ฐ์…‹ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
๐Ÿค— Datasets ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์™€ [Smithsonian Butterflies](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset) ๋ฐ์ดํ„ฐ์…‹์„ ์‰ฝ๊ฒŒ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```py
>>> from datasets import load_dataset
>>> config.dataset_name = "huggan/smithsonian_butterflies_subset"
>>> dataset = load_dataset(config.dataset_name, split="train")
```
๐Ÿ’ก[HugGan Community Event](https://huggingface.co/huggan) ์—์„œ ์ถ”๊ฐ€์˜ ๋ฐ์ดํ„ฐ์…‹์„ ์ฐพ๊ฑฐ๋‚˜ ๋กœ์ปฌ์˜ [`ImageFolder`](https://huggingface.co/docs/datasets/image_dataset#imagefolder)๋ฅผ ๋งŒ๋“ฆ์œผ๋กœ์จ ๋‚˜๋งŒ์˜ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. HugGan Community Event ์— ๊ฐ€์ ธ์˜จ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฒฝ์šฐ ๋ ˆํฌ์ง€ํ† ๋ฆฌ์˜ id๋กœ `config.dataset_name` ์„ ์„ค์ •ํ•˜๊ณ , ๋‚˜๋งŒ์˜ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ `imagefolder` ๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
๐Ÿค— Datasets์€ [`~datasets.Image`] ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•ด ์ž๋™์œผ๋กœ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋””์ฝ”๋”ฉํ•˜๊ณ  [`PIL.Image`](https://pillow.readthedocs.io/en/stable/reference/Image.html)๋กœ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค. ์ด๋ฅผ ์‹œ๊ฐํ™” ํ•ด๋ณด๋ฉด:
```py
>>> import matplotlib.pyplot as plt
>>> fig, axs = plt.subplots(1, 4, figsize=(16, 4))
>>> for i, image in enumerate(dataset[:4]["image"]):
... axs[i].imshow(image)
... axs[i].set_axis_off()
>>> fig.show()
```
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/butterflies_ds.png)
์ด๋ฏธ์ง€๋Š” ๋ชจ๋‘ ๋‹ค๋ฅธ ์‚ฌ์ด์ฆˆ์ด๊ธฐ ๋•Œ๋ฌธ์—, ์šฐ์„  ์ „์ฒ˜๋ฆฌ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค:
- `Resize` ๋Š” `config.image_size` ์— ์ •์˜๋œ ์ด๋ฏธ์ง€ ์‚ฌ์ด์ฆˆ๋กœ ๋ณ€๊ฒฝํ•ฉ๋‹ˆ๋‹ค.
- `RandomHorizontalFlip` ์€ ๋žœ๋ค์ ์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๋ฏธ๋Ÿฌ๋งํ•˜์—ฌ ๋ฐ์ดํ„ฐ์…‹์„ ๋ณด๊ฐ•ํ•ฉ๋‹ˆ๋‹ค.
- `Normalize` ๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ƒํ•˜๋Š” [-1, 1] ๋ฒ”์œ„๋กœ ํ”ฝ์…€ ๊ฐ’์„ ์žฌ์กฐ์ • ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
```py
>>> from torchvision import transforms
>>> preprocess = transforms.Compose(
... [
... transforms.Resize((config.image_size, config.image_size)),
... transforms.RandomHorizontalFlip(),
... transforms.ToTensor(),
... transforms.Normalize([0.5], [0.5]),
... ]
... )
```
ํ•™์Šต ๋„์ค‘์— `preprocess` ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜๋ ค๋ฉด ๐Ÿค— Datasets์˜ [`~datasets.Dataset.set_transform`] ๋ฐฉ๋ฒ•์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
```py
>>> def transform(examples):
... images = [preprocess(image.convert("RGB")) for image in examples["image"]]
... return {"images": images}
>>> dataset.set_transform(transform)
```
์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ๊ฐ€ ์กฐ์ •๋˜์—ˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€๋ฅผ ๋‹ค์‹œ ์‹œ๊ฐํ™”ํ•ด๋ณด์„ธ์š”. ์ด์ œ [DataLoader](https://pytorch.org/docs/stable/data#torch.utils.data.DataLoader)์— ๋ฐ์ดํ„ฐ์…‹์„ ํฌํ•จํ•ด ํ•™์Šตํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค!
```py
>>> import torch
>>> train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)
```
## UNet2DModel ์ƒ์„ฑํ•˜๊ธฐ
๐Ÿงจ Diffusers์— ์‚ฌ์ „ํ•™์Šต๋œ ๋ชจ๋ธ๋“ค์€ ๋ชจ๋ธ ํด๋ž˜์Šค์—์„œ ์›ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์‰ฝ๊ฒŒ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, [`UNet2DModel`]๋ฅผ ์ƒ์„ฑํ•˜๋ ค๋ฉด:
```py
>>> from diffusers import UNet2DModel
>>> model = UNet2DModel(
... sample_size=config.image_size, # ํƒ€๊ฒŸ ์ด๋ฏธ์ง€ ํ•ด์ƒ๋„
... in_channels=3, # ์ž…๋ ฅ ์ฑ„๋„ ์ˆ˜, RGB ์ด๋ฏธ์ง€์—์„œ 3
... out_channels=3, # ์ถœ๋ ฅ ์ฑ„๋„ ์ˆ˜
... layers_per_block=2, # UNet ๋ธ”๋Ÿญ๋‹น ๋ช‡ ๊ฐœ์˜ ResNet ๋ ˆ์ด์–ด๊ฐ€ ์‚ฌ์šฉ๋˜๋Š”์ง€
... block_out_channels=(128, 128, 256, 256, 512, 512), # ๊ฐ UNet ๋ธ”๋Ÿญ์„ ์œ„ํ•œ ์ถœ๋ ฅ ์ฑ„๋„ ์ˆ˜
... down_block_types=(
... "DownBlock2D", # ์ผ๋ฐ˜์ ์ธ ResNet ๋‹ค์šด์ƒ˜ํ”Œ๋ง ๋ธ”๋Ÿญ
... "DownBlock2D",
... "DownBlock2D",
... "DownBlock2D",
... "AttnDownBlock2D", # spatial self-attention์ด ํฌํ•จ๋œ ์ผ๋ฐ˜์ ์ธ ResNet ๋‹ค์šด์ƒ˜ํ”Œ๋ง ๋ธ”๋Ÿญ
... "DownBlock2D",
... ),
... up_block_types=(
... "UpBlock2D", # ์ผ๋ฐ˜์ ์ธ ResNet ์—…์ƒ˜ํ”Œ๋ง ๋ธ”๋Ÿญ
... "AttnUpBlock2D", # spatial self-attention์ด ํฌํ•จ๋œ ์ผ๋ฐ˜์ ์ธ ResNet ์—…์ƒ˜ํ”Œ๋ง ๋ธ”๋Ÿญ
... "UpBlock2D",
... "UpBlock2D",
... "UpBlock2D",
... "UpBlock2D",
... ),
... )
```
์ƒ˜ํ”Œ์˜ ์ด๋ฏธ์ง€ ํฌ๊ธฐ์™€ ๋ชจ๋ธ ์ถœ๋ ฅ ํฌ๊ธฐ๊ฐ€ ๋งž๋Š”์ง€ ๋น ๋ฅด๊ฒŒ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ์ข‹์€ ์•„์ด๋””์–ด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค:
```py
>>> sample_image = dataset[0]["images"].unsqueeze(0)
>>> print("Input shape:", sample_image.shape)
Input shape: torch.Size([1, 3, 128, 128])
>>> print("Output shape:", model(sample_image, timestep=0).sample.shape)
Output shape: torch.Size([1, 3, 128, 128])
```
ํ›Œ๋ฅญํ•ด์š”! ๋‹ค์Œ, ์ด๋ฏธ์ง€์— ์•ฝ๊ฐ„์˜ ๋…ธ์ด์ฆˆ๋ฅผ ๋”ํ•˜๊ธฐ ์œ„ํ•ด ์Šค์ผ€์ค„๋Ÿฌ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
## ์Šค์ผ€์ค„๋Ÿฌ ์ƒ์„ฑํ•˜๊ธฐ
์Šค์ผ€์ค„๋Ÿฌ๋Š” ๋ชจ๋ธ์„ ํ•™์Šต ๋˜๋Š” ์ถ”๋ก ์— ์‚ฌ์šฉํ•˜๋Š”์ง€์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ์ถ”๋ก ์‹œ์—, ์Šค์ผ€์ค„๋Ÿฌ๋Š” ๋…ธ์ด์ฆˆ๋กœ๋ถ€ํ„ฐ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต์‹œ ์Šค์ผ€์ค„๋Ÿฌ๋Š” diffusion ๊ณผ์ •์—์„œ์˜ ํŠน์ • ํฌ์ธํŠธ๋กœ๋ถ€ํ„ฐ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ๋˜๋Š” ์ƒ˜ํ”Œ์„ ๊ฐ€์ ธ์™€ *๋…ธ์ด์ฆˆ ์Šค์ผ€์ค„* ๊ณผ *์—…๋ฐ์ดํŠธ ๊ทœ์น™*์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€์— ๋…ธ์ด์ฆˆ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
`DDPMScheduler`๋ฅผ ๋ณด๋ฉด ์ด์ „์œผ๋กœ๋ถ€ํ„ฐ `sample_image`์— ๋žœ๋คํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ๋”ํ•˜๋Š” `add_noise` ๋ฉ”์„œ๋“œ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค:
```py
>>> import torch
>>> from PIL import Image
>>> from diffusers import DDPMScheduler
>>> noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
>>> noise = torch.randn(sample_image.shape)
>>> timesteps = torch.LongTensor([50])
>>> noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)
>>> Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])
```
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/noisy_butterfly.png)
๋ชจ๋ธ์˜ ํ•™์Šต ๋ชฉ์ ์€ ์ด๋ฏธ์ง€์— ๋”ํ•ด์ง„ ๋…ธ์ด์ฆˆ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๋‹จ๊ณ„์—์„œ ์†์‹ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```py
>>> import torch.nn.functional as F
>>> noise_pred = model(noisy_image, timesteps).sample
>>> loss = F.mse_loss(noise_pred, noise)
```
## ๋ชจ๋ธ ํ•™์Šตํ•˜๊ธฐ
์ง€๊ธˆ๊นŒ์ง€, ๋ชจ๋ธ ํ•™์Šต์„ ์‹œ์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๋ถ€๋ถ„์„ ๊ฐ–์ถ”์—ˆ์œผ๋ฉฐ ์ด์ œ ๋‚จ์€ ๊ฒƒ์€ ๋ชจ๋“  ๊ฒƒ์„ ์กฐํ•ฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์šฐ์„  ์˜ตํ‹ฐ๋งˆ์ด์ €(optimizer)์™€ ํ•™์Šต๋ฅ  ์Šค์ผ€์ค„๋Ÿฌ(learning rate scheduler)๊ฐ€ ํ•„์š”ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค:
```py
>>> from diffusers.optimization import get_cosine_schedule_with_warmup
>>> optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
>>> lr_scheduler = get_cosine_schedule_with_warmup(
... optimizer=optimizer,
... num_warmup_steps=config.lr_warmup_steps,
... num_training_steps=(len(train_dataloader) * config.num_epochs),
... )
```
๊ทธ ํ›„, ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด, `DDPMPipeline`์„ ์‚ฌ์šฉํ•ด ๋ฐฐ์น˜์˜ ์ด๋ฏธ์ง€ ์ƒ˜ํ”Œ๋“ค์„ ์ƒ์„ฑํ•˜๊ณ  ๊ทธ๋ฆฌ๋“œ ํ˜•ํƒœ๋กœ ์ €์žฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```py
>>> from diffusers import DDPMPipeline
>>> import math
>>> import os
>>> def make_grid(images, rows, cols):
... w, h = images[0].size
... grid = Image.new("RGB", size=(cols * w, rows * h))
... for i, image in enumerate(images):
... grid.paste(image, box=(i % cols * w, i // cols * h))
... return grid
>>> def evaluate(config, epoch, pipeline):
... # ๋žœ๋คํ•œ ๋…ธ์ด์ฆˆ๋กœ ๋ถ€ํ„ฐ ์ด๋ฏธ์ง€๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.(์ด๋Š” ์—ญ์ „ํŒŒ diffusion ๊ณผ์ •์ž…๋‹ˆ๋‹ค.)
... # ๊ธฐ๋ณธ ํŒŒ์ดํ”„๋ผ์ธ ์ถœ๋ ฅ ํ˜•ํƒœ๋Š” `List[PIL.Image]` ์ž…๋‹ˆ๋‹ค.
... images = pipeline(
... batch_size=config.eval_batch_size,
... generator=torch.manual_seed(config.seed),
... ).images
... # ์ด๋ฏธ์ง€๋“ค์„ ๊ทธ๋ฆฌ๋“œ๋กœ ๋งŒ๋“ค์–ด์ค๋‹ˆ๋‹ค.
... image_grid = make_grid(images, rows=4, cols=4)
... # ์ด๋ฏธ์ง€๋“ค์„ ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.
... test_dir = os.path.join(config.output_dir, "samples")
... os.makedirs(test_dir, exist_ok=True)
... image_grid.save(f"{test_dir}/{epoch:04d}.png")
```
TensorBoard์— ๋กœ๊น…, ๊ทธ๋ž˜๋””์–ธํŠธ ๋ˆ„์  ๋ฐ ํ˜ผํ•ฉ ์ •๋ฐ€๋„ ํ•™์Šต์„ ์‰ฝ๊ฒŒ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๐Ÿค— Accelerate๋ฅผ ํ•™์Šต ๋ฃจํ”„์— ํ•จ๊ป˜ ์•ž์„œ ๋งํ•œ ๋ชจ๋“  ๊ตฌ์„ฑ ์ •๋ณด๋“ค์„ ๋ฌถ์–ด ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ—ˆ๋ธŒ์— ๋ชจ๋ธ์„ ์—…๋กœ๋“œ ํ•˜๊ธฐ ์œ„ํ•ด ๋ ˆํฌ์ง€ํ† ๋ฆฌ ์ด๋ฆ„ ๋ฐ ์ •๋ณด๋ฅผ ๊ฐ€์ ธ์˜ค๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜๋ฅผ ์ž‘์„ฑํ•˜๊ณ  ํ—ˆ๋ธŒ์— ์—…๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๐Ÿ’ก์•„๋ž˜์˜ ํ•™์Šต ๋ฃจํ”„๋Š” ์–ด๋ ต๊ณ  ๊ธธ์–ด ๋ณด์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋‚˜์ค‘์— ํ•œ ์ค„์˜ ์ฝ”๋“œ๋กœ ํ•™์Šต์„ ํ•œ๋‹ค๋ฉด ๊ทธ๋งŒํ•œ ๊ฐ€์น˜๊ฐ€ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค! ๋งŒ์•ฝ ๊ธฐ๋‹ค๋ฆฌ์ง€ ๋ชปํ•˜๊ณ  ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด, ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์ž์œ ๋กญ๊ฒŒ ๋ถ™์—ฌ๋„ฃ๊ณ  ์ž‘๋™์‹œํ‚ค๋ฉด ๋ฉ๋‹ˆ๋‹ค. ๐Ÿค—
```py
>>> from accelerate import Accelerator
>>> from huggingface_hub import HfFolder, Repository, whoami
>>> from tqdm.auto import tqdm
>>> from pathlib import Path
>>> import os
>>> def get_full_repo_name(model_id: str, organization: str = None, token: str = None):
... if token is None:
... token = HfFolder.get_token()
... if organization is None:
... username = whoami(token)["name"]
... return f"{username}/{model_id}"
... else:
... return f"{organization}/{model_id}"
>>> def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
... # accelerator์™€ tensorboard ๋กœ๊น… ์ดˆ๊ธฐํ™”
... accelerator = Accelerator(
... mixed_precision=config.mixed_precision,
... gradient_accumulation_steps=config.gradient_accumulation_steps,
... log_with="tensorboard",
... logging_dir=os.path.join(config.output_dir, "logs"),
... )
... if accelerator.is_main_process:
... if config.push_to_hub:
... repo_name = get_full_repo_name(Path(config.output_dir).name)
... repo = Repository(config.output_dir, clone_from=repo_name)
... elif config.output_dir is not None:
... os.makedirs(config.output_dir, exist_ok=True)
... accelerator.init_trackers("train_example")
... # ๋ชจ๋“  ๊ฒƒ์ด ์ค€๋น„๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
... # ๊ธฐ์–ตํ•ด์•ผ ํ•  ํŠน์ •ํ•œ ์ˆœ์„œ๋Š” ์—†์œผ๋ฉฐ ์ค€๋น„ํ•œ ๋ฐฉ๋ฒ•์— ์ œ๊ณตํ•œ ๊ฒƒ๊ณผ ๋™์ผํ•œ ์ˆœ์„œ๋กœ ๊ฐ์ฒด์˜ ์••์ถ•์„ ํ’€๋ฉด ๋ฉ๋‹ˆ๋‹ค.
... model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
... model, optimizer, train_dataloader, lr_scheduler
... )
... global_step = 0
... # ์ด์ œ ๋ชจ๋ธ์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
... for epoch in range(config.num_epochs):
... progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
... progress_bar.set_description(f"Epoch {epoch}")
... for step, batch in enumerate(train_dataloader):
... clean_images = batch["images"]
... # ์ด๋ฏธ์ง€์— ๋”ํ•  ๋…ธ์ด์ฆˆ๋ฅผ ์ƒ˜ํ”Œ๋งํ•ฉ๋‹ˆ๋‹ค.
... noise = torch.randn(clean_images.shape).to(clean_images.device)
... bs = clean_images.shape[0]
... # ๊ฐ ์ด๋ฏธ์ง€๋ฅผ ์œ„ํ•œ ๋žœ๋คํ•œ ํƒ€์ž„์Šคํ…(timestep)์„ ์ƒ˜ํ”Œ๋งํ•ฉ๋‹ˆ๋‹ค.
... timesteps = torch.randint(
... 0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device
... ).long()
... # ๊ฐ ํƒ€์ž„์Šคํ…์˜ ๋…ธ์ด์ฆˆ ํฌ๊ธฐ์— ๋”ฐ๋ผ ๊นจ๋—ํ•œ ์ด๋ฏธ์ง€์— ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
... # (์ด๋Š” foward diffusion ๊ณผ์ •์ž…๋‹ˆ๋‹ค.)
... noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
... with accelerator.accumulate(model):
... # ๋…ธ์ด์ฆˆ๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.
... noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
... loss = F.mse_loss(noise_pred, noise)
... accelerator.backward(loss)
... accelerator.clip_grad_norm_(model.parameters(), 1.0)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
... logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
... progress_bar.set_postfix(**logs)
... accelerator.log(logs, step=global_step)
... global_step += 1
... # ๊ฐ ์—ํฌํฌ๊ฐ€ ๋๋‚œ ํ›„ evaluate()์™€ ๋ช‡ ๊ฐ€์ง€ ๋ฐ๋ชจ ์ด๋ฏธ์ง€๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์ƒ˜ํ”Œ๋งํ•˜๊ณ  ๋ชจ๋ธ์„ ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.
... if accelerator.is_main_process:
... pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
... if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
... evaluate(config, epoch, pipeline)
... if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
... if config.push_to_hub:
... repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=True)
... else:
... pipeline.save_pretrained(config.output_dir)
```
ํœด, ์ฝ”๋“œ๊ฐ€ ๊ฝค ๋งŽ์•˜๋„ค์š”! ํ•˜์ง€๋งŒ ๐Ÿค— Accelerate์˜ [`~accelerate.notebook_launcher`] ํ•จ์ˆ˜์™€ ํ•™์Šต์„ ์‹œ์ž‘ํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ•จ์ˆ˜์— ํ•™์Šต ๋ฃจํ”„, ๋ชจ๋“  ํ•™์Šต ์ธ์ˆ˜, ํ•™์Šต์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค ์ˆ˜(์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ GPU์˜ ์ˆ˜๋ฅผ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ์Œ)๋ฅผ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค:
```py
>>> from accelerate import notebook_launcher
>>> args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
>>> notebook_launcher(train_loop, args, num_processes=1)
```
ํ•œ๋ฒˆ ํ•™์Šต์ด ์™„๋ฃŒ๋˜๋ฉด, diffusion ๋ชจ๋ธ๋กœ ์ƒ์„ฑ๋œ ์ตœ์ข… ๐Ÿฆ‹์ด๋ฏธ์ง€๐Ÿฆ‹๋ฅผ ํ™•์ธํ•ด๋ณด๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค!
```py
>>> import glob
>>> sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
>>> Image.open(sample_images[-1])
```
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/butterflies_final.png)
## ๋‹ค์Œ ๋‹จ๊ณ„
Unconditional ์ด๋ฏธ์ง€ ์ƒ์„ฑ์€ ํ•™์Šต๋  ์ˆ˜ ์žˆ๋Š” ์ž‘์—… ์ค‘ ํ•˜๋‚˜์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์ž‘์—…๊ณผ ํ•™์Šต ๋ฐฉ๋ฒ•์€ [๐Ÿงจ Diffusers ํ•™์Šต ์˜ˆ์‹œ](../training/overview) ํŽ˜์ด์ง€์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:
- [Textual Inversion](../training/text_inversion), ํŠน์ • ์‹œ๊ฐ์  ๊ฐœ๋…์„ ํ•™์Šต์‹œ์ผœ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€์— ํ†ตํ•ฉ์‹œํ‚ค๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค.
- [DreamBooth](../training/dreambooth), ์ฃผ์ œ์— ๋Œ€ํ•œ ๋ช‡ ๊ฐ€์ง€ ์ž…๋ ฅ ์ด๋ฏธ์ง€๋“ค์ด ์ฃผ์–ด์ง€๋ฉด ์ฃผ์ œ์— ๋Œ€ํ•œ ๊ฐœ์ธํ™”๋œ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
- [Guide](../training/text2image) ๋ฐ์ดํ„ฐ์…‹์— Stable Diffusion ๋ชจ๋ธ์„ ํŒŒ์ธํŠœ๋‹ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
- [Guide](../training/lora) LoRA๋ฅผ ์‚ฌ์šฉํ•ด ๋งค์šฐ ํฐ ๋ชจ๋ธ์„ ๋น ๋ฅด๊ฒŒ ํŒŒ์ธํŠœ๋‹ํ•˜๊ธฐ ์œ„ํ•œ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์ ์ธ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.