1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/en/api/models/autoencoder_dc.md
Junsong Chen cd892041e2 [DC-AE] Add the official Deep Compression Autoencoder code(32x,64x,128x compression ratio); (#9708)
* first add a script for DC-AE;

* DC-AE init

* replace triton with custom implementation

* 1. rename file and remove un-used codes;

* no longer rely on omegaconf and dataclass

* replace custom activation with diffuers activation

* remove dc_ae attention in attention_processor.py

* iinherit from ModelMixin

* inherit from ConfigMixin

* dc-ae reduce to one file

* update downsample and upsample

* clean code

* support DecoderOutput

* remove get_same_padding and val2tuple

* remove autocast and some assert

* update ResBlock

* remove contents within super().__init__

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove opsequential

* update other blocks to support the removal of build_norm

* remove build encoder/decoder project in/out

* remove inheritance of RMSNorm2d from LayerNorm

* remove reset_parameters for RMSNorm2d

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove device and dtype in RMSNorm2d __init__

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove op_list & build_block

* remove build_stage_main

* change file name to autoencoder_dc

* move LiteMLA to attention.py

* align with other vae decode output;

* add DC-AE into init files;

* update

* make quality && make style;

* quick push before dgx disappears again

* update

* make style

* update

* update

* fix

* refactor

* refactor

* refactor

* update

* possibly change to nn.Linear

* refactor

* make fix-copies

* replace vae with ae

* replace get_block_from_block_type to get_block

* replace downsample_block_type from Conv to conv for consistency

* add scaling factors

* incorporate changes for all checkpoints

* make style

* move mla to attention processor file; split qkv conv to linears

* refactor

* add tests

* from original file loader

* add docs

* add standard autoencoder methods

* combine attention processor

* fix tests

* update

* minor fix

* minor fix

* minor fix & in/out shortcut rename

* minor fix

* make style

* fix paper link

* update docs

* update single file loading

* make style

* remove single file loading support; todo for DN6

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add abstract

---------

Co-authored-by: Junyu Chen <chenjydl2003@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: chenjy2003 <70215701+chenjy2003@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-07 01:01:51 +05:30

4.2 KiB

AutoencoderDC

The 2D Autoencoder model used in SANA and introduced in DCAE by authors Junyu Chen*, Han Cai*, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, Song Han from MIT HAN Lab.

The abstract from the paper is:

We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at this https URL.

The following DCAE models are released and supported in Diffusers.

Diffusers format Original format
mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers mit-han-lab/dc-ae-f32c32-sana-1.0
mit-han-lab/dc-ae-f32c32-in-1.0-diffusers mit-han-lab/dc-ae-f32c32-in-1.0
mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers mit-han-lab/dc-ae-f32c32-mix-1.0
mit-han-lab/dc-ae-f64c128-in-1.0-diffusers mit-han-lab/dc-ae-f64c128-in-1.0
mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers mit-han-lab/dc-ae-f64c128-mix-1.0
mit-han-lab/dc-ae-f128c512-in-1.0-diffusers mit-han-lab/dc-ae-f128c512-in-1.0
mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers mit-han-lab/dc-ae-f128c512-mix-1.0

Load a model in Diffusers format with [~ModelMixin.from_pretrained].

from diffusers import AutoencoderDC

ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32).to("cuda")

AutoencoderDC

autodoc AutoencoderDC

  • encode
  • decode
  • all

DecoderOutput

autodoc models.autoencoders.vae.DecoderOutput