* Initial LTX 2.0 transformer implementation * Add tests for LTX 2 transformer model * Get LTX 2 transformer tests working * Rename LTX 2 compile test class to have LTX2 * Remove RoPE debug print statements * Get LTX 2 transformer compile tests passing * Fix LTX 2 transformer shape errors * Initial script to convert LTX 2 transformer to diffusers * Add more LTX 2 transformer audio arguments * Allow LTX 2 transformer to be loaded from local path for conversion * Improve dummy inputs and add test for LTX 2 transformer consistency * Fix LTX 2 transformer bugs so consistency test passes * Initial implementation of LTX 2.0 video VAE * Explicitly specify temporal and spatial VAE scale factors when converting * Add initial LTX 2.0 video VAE tests * Add initial LTX 2.0 video VAE tests (part 2) * Get diffusers implementation on par with official LTX 2.0 video VAE implementation * Initial LTX 2.0 vocoder implementation * Use RMSNorm implementation closer to original for LTX 2.0 video VAE * start audio decoder. * init registration. * up * simplify and clean up * up * Initial LTX 2.0 text encoder implementation * Rough initial LTX 2.0 pipeline implementation * up * up * up * up * Add imports for LTX 2.0 Audio VAE * Conversion script for LTX 2.0 Audio VAE Decoder * Add Audio VAE logic to T2V pipeline * Duplicate scheduler for audio latents * Support num_videos_per_prompt for prompt embeddings * LTX 2.0 scheduler and full pipeline conversion * Add script to test full LTX2Pipeline T2V inference * Fix pipeline return bugs * Add LTX 2 text encoder and vocoder to ltx2 subdirectory __init__ * Fix more bugs in LTX2Pipeline.__call__ * Improve CPU offload support * Fix pipeline audio VAE decoding dtype bug * Fix video shape error in full pipeline test script * Get LTX 2 T2V pipeline to produce reasonable outputs * Make LTX 2.0 scheduler more consistent with original code * Fix typo when applying scheduler fix in T2V inference script * Refactor Audio VAE to be simpler and remove helpers (#7) * remove resolve causality axes stuff. * remove a bunch of helpers. * remove adjust output shape helper. * remove the use of audiolatentshape. * move normalization and patchify out of pipeline. * fix * up * up * Remove unpatchify and patchify ops before audio latents denormalization (#9) --------- Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com> * Add support for I2V (#8) * start i2v. * up * up * up * up * up * remove uniform strategy code. * remove unneeded code. * Denormalize audio latents in I2V pipeline (analogous to T2V change) (#11) * test i2v. * Move Video and Audio Text Encoder Connectors to Transformer (#12) * Denormalize audio latents in I2V pipeline (analogous to T2V change) * Initial refactor to put video and audio text encoder connectors in transformer * Get LTX 2 transformer tests working after connector refactor * precompute run_connectors,. * fixes * Address review comments * Calculate RoPE double precisions freqs using torch instead of np * Further simplify LTX 2 RoPE freq calc * Make connectors a separate module (#18) * remove text_encoder.py * address yiyi's comments. * up * up * up * up --------- Co-authored-by: sayakpaul <spsayakpaul@gmail.com> * up (#19) * address initial feedback from lightricks team (#16) * cross_attn_timestep_scale_multiplier to 1000 * implement split rope type. * up * propagate rope_type to rope embed classes as well. * up * When using split RoPE, make sure that the output dtype is same as input dtype * Fix apply split RoPE shape error when reshaping x to 4D * Add export_utils file for exporting LTX 2.0 videos with audio * Tests for T2V and I2V (#6) * add ltx2 pipeline tests. * up * up * up * up * remove content * style * Denormalize audio latents in I2V pipeline (analogous to T2V change) * Initial refactor to put video and audio text encoder connectors in transformer * Get LTX 2 transformer tests working after connector refactor * up * up * i2v tests. * up * Address review comments * Calculate RoPE double precisions freqs using torch instead of np * Further simplify LTX 2 RoPE freq calc * revert unneded changes. * up * up * update to split style rope. * up --------- Co-authored-by: Daniel Gu <dgu8957@gmail.com> * up * use export util funcs. * Point original checkpoint to LTX 2.0 official checkpoint * Allow the I2V pipeline to accept image URLs * make style and make quality * remove function map. * remove args. * update docs. * update doc entries. * disable ltx2_consistency test * Simplify LTX 2 RoPE forward by removing coords is None logic * make style and make quality * Support LTX 2.0 audio VAE encoder * Apply suggestions from code review Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Remove print statement in audio VAE * up * Fix bug when calculating audio RoPE coords * Ltx 2 latent upsample pipeline (#12922) * Initial implementation of LTX 2.0 latent upsampling pipeline * Add new LTX 2.0 spatial latent upsampler logic * Add test script for LTX 2.0 latent upsampling * Add option to enable VAE tiling in upsampling test script * Get latent upsampler working with video latents * Fix typo in BlurDownsample * Add latent upsample pipeline docstring and example * Remove deprecated pipeline VAE slicing/tiling methods * make style and make quality * When returning latents, return unpacked and denormalized latents for T2V and I2V * Add model_cpu_offload_seq for latent upsampling pipeline --------- Co-authored-by: Daniel Gu <dgu8957@gmail.com> * Fix latent upsampler filename in LTX 2 conversion script * Add latent upsample pipeline to LTX 2 docs * Add dummy objects for LTX 2 latent upsample pipeline * Set default FPS to official LTX 2 ckpt default of 24.0 * Set default CFG scale to official LTX 2 ckpt default of 4.0 * Update LTX 2 pipeline example docstrings * make style and make quality * Remove LTX 2 test scripts * Fix LTX 2 upsample pipeline example docstring * Add logic to convert and save a LTX 2 upsampling pipeline * Document LTX2VideoTransformer3DModel forward pass --------- Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
π€ Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, π€ Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.
π€ Diffusers offers three core components:
- State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code.
- Interchangeable noise schedulers for different diffusion speeds and output quality.
- Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
Installation
We recommend installing π€ Diffusers in a virtual environment from PyPI or Conda. For more details about installing PyTorch, please refer to their official documentation.
PyTorch
With pip (official package):
pip install --upgrade diffusers[torch]
With conda (maintained by the community):
conda install -c conda-forge diffusers
Apple Silicon (M1/M2) support
Please refer to the How to use Stable Diffusion in Apple Silicon guide.
Quickstart
Generating outputs is super easy with π€ Diffusers. To generate an image from text, use the from_pretrained method to load any pretrained diffusion model (browse the Hub for 30,000+ checkpoints):
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
You can also dig into the models and schedulers toolbox to build your own diffusion system:
from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)
sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
input = noise
for t in scheduler.timesteps:
with torch.no_grad():
noisy_residual = model(input, t).sample
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
image
Check out the Quickstart to launch your diffusion journey today!
How to navigate the documentation
| Documentation | What can I learn? |
|---|---|
| Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| Training | Guides for how to train a diffusion model for different tasks with different training techniques. |
Contribution
We β€οΈ contributions from the open-source community! If you want to contribute to this library, please check out our Contribution guide. You can look out for issues you'd like to tackle to contribute to the library.
- See Good first issues for general opportunities to contribute
- See New model/pipeline to contribute exciting new diffusion models / diffusion pipelines
- See New scheduler
Also, say π in our public Discord channel . We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out β.
Popular Tasks & Pipelines
| Task | Pipeline | π€ Hub |
|---|---|---|
| Unconditional Image Generation | DDPM | google/ddpm-ema-church-256 |
| Text-to-Image | Stable Diffusion Text-to-Image | stable-diffusion-v1-5/stable-diffusion-v1-5 |
| Text-to-Image | unCLIP | kakaobrain/karlo-v1-alpha |
| Text-to-Image | DeepFloyd IF | DeepFloyd/IF-I-XL-v1.0 |
| Text-to-Image | Kandinsky | kandinsky-community/kandinsky-2-2-decoder |
| Text-guided Image-to-Image | ControlNet | lllyasviel/sd-controlnet-canny |
| Text-guided Image-to-Image | InstructPix2Pix | timbrooks/instruct-pix2pix |
| Text-guided Image-to-Image | Stable Diffusion Image-to-Image | stable-diffusion-v1-5/stable-diffusion-v1-5 |
| Text-guided Image Inpainting | Stable Diffusion Inpainting | stable-diffusion-v1-5/stable-diffusion-inpainting |
| Image Variation | Stable Diffusion Image Variation | lambdalabs/sd-image-variations-diffusers |
| Super Resolution | Stable Diffusion Upscale | stabilityai/stable-diffusion-x4-upscaler |
| Super Resolution | Stable Diffusion Latent Upscale | stabilityai/sd-x2-latent-upscaler |
Popular libraries using 𧨠Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/InstantID/InstantID
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +14,000 other amazing GitHub repositories πͺ
Thank you for using us β€οΈ.
Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available here
- @hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
- @ermongroup's DDIM implementation, available here
- @yang-song's Score-VE and Score-VP implementations, available here
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.
Citation
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
