mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* introduce to promote reusability. * up * add more tests * up * remove comments. * fix fuse_nan test * clarify the scope of fuse_lora and unfuse_lora * remove space * rewrite fuse_lora a bit. * feedback * copy over load_lora_into_text_encoder. * address dhruv's feedback. * fix-copies * fix issubclass. * num_fused_loras * fix * fix * remove mapping * up * fix * style * fix-copies * change to SD3TransformerLoRALoadersMixin * Apply suggestions from code review Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> * up * handle wuerstchen * up * move lora to lora_pipeline.py * up * fix-copies * fix documentation. * comment set_adapters(). * fix-copies * fix set_adapters() at the model level. * fix? * fix * loraloadermixin. --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
1466 lines
72 KiB
Python
1466 lines
72 KiB
Python
# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
from packaging import version
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
|
from diffusers.configuration_utils import FrozenDict, deprecate
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.loaders import (
|
|
FromSingleFileMixin,
|
|
IPAdapterMixin,
|
|
StableDiffusionLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
)
|
|
from diffusers.models.attention import BasicTransformerBlock
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
PIL_INTERPOLATION,
|
|
USE_PEFT_BACKEND,
|
|
logging,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers import UniPCMultistepScheduler
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
|
|
|
|
>>> pipe = StableDiffusionReferencePipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5",
|
|
safety_checker=None,
|
|
torch_dtype=torch.float16
|
|
).to('cuda:0')
|
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
>>> result_img = pipe(ref_image=input_image,
|
|
prompt="1girl",
|
|
num_inference_steps=20,
|
|
reference_attn=True,
|
|
reference_adain=True).images[0]
|
|
|
|
>>> result_img.show()
|
|
```
|
|
"""
|
|
|
|
|
|
def torch_dfs(model: torch.nn.Module):
|
|
r"""
|
|
Performs a depth-first search on the given PyTorch model and returns a list of all its child modules.
|
|
|
|
Args:
|
|
model (torch.nn.Module): The PyTorch model to perform the depth-first search on.
|
|
|
|
Returns:
|
|
list: A list of all child modules of the given model.
|
|
"""
|
|
result = [model]
|
|
for child in model.children():
|
|
result += torch_dfs(child)
|
|
return result
|
|
|
|
|
|
class StableDiffusionReferencePipeline(
|
|
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
|
):
|
|
r"""
|
|
Pipeline for Stable Diffusion Reference.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
feature_extractor ([`CLIPImageProcessor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
" file"
|
|
)
|
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
|
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
|
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
|
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
|
" Hub, it would be very nice if you could open a Pull request for the"
|
|
" `scheduler/scheduler_config.json` file"
|
|
)
|
|
deprecate(
|
|
"skip_prk_steps not set",
|
|
"1.0.0",
|
|
deprecation_message,
|
|
standard_warn=False,
|
|
)
|
|
new_config = dict(scheduler.config)
|
|
new_config["skip_prk_steps"] = True
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
|
version.parse(unet.config._diffusers_version).base_version
|
|
) < version.parse("0.9.0.dev0")
|
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
|
deprecation_message = (
|
|
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
|
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
|
" the `unet/config.json` file"
|
|
)
|
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(unet.config)
|
|
new_config["sample_size"] = 64
|
|
unet._internal_dict = FrozenDict(new_config)
|
|
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
|
|
if unet.config.in_channels != 4:
|
|
logger.warning(
|
|
f"You have loaded a UNet with {unet.config.in_channels} input channels, whereas by default,"
|
|
f" {self.__class__} assumes that `pipeline.unet` has 4 input channels: 4 for `num_channels_latents`,"
|
|
". If you did not intend to modify"
|
|
" this behavior, please check whether you have loaded the right checkpoint."
|
|
)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
def _default_height_width(
|
|
self,
|
|
height: Optional[int],
|
|
width: Optional[int],
|
|
image: Union[PIL.Image.Image, torch.Tensor, List[PIL.Image.Image]],
|
|
) -> Tuple[int, int]:
|
|
r"""
|
|
Calculate the default height and width for the given image.
|
|
|
|
Args:
|
|
height (int or None): The desired height of the image. If None, the height will be determined based on the input image.
|
|
width (int or None): The desired width of the image. If None, the width will be determined based on the input image.
|
|
image (PIL.Image.Image or torch.Tensor or list[PIL.Image.Image]): The input image or a list of images.
|
|
|
|
Returns:
|
|
Tuple[int, int]: A tuple containing the calculated height and width.
|
|
|
|
"""
|
|
# NOTE: It is possible that a list of images have different
|
|
# dimensions for each image, so just checking the first image
|
|
# is not _exactly_ correct, but it is simple.
|
|
while isinstance(image, list):
|
|
image = image[0]
|
|
|
|
if height is None:
|
|
if isinstance(image, PIL.Image.Image):
|
|
height = image.height
|
|
elif isinstance(image, torch.Tensor):
|
|
height = image.shape[2]
|
|
|
|
height = (height // 8) * 8 # round down to nearest multiple of 8
|
|
|
|
if width is None:
|
|
if isinstance(image, PIL.Image.Image):
|
|
width = image.width
|
|
elif isinstance(image, torch.Tensor):
|
|
width = image.shape[3]
|
|
|
|
width = (width // 8) * 8 # round down to nearest multiple of 8
|
|
|
|
return height, width
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
|
def check_inputs(
|
|
self,
|
|
prompt: Optional[Union[str, List[str]]],
|
|
height: int,
|
|
width: int,
|
|
callback_steps: Optional[int],
|
|
negative_prompt: Optional[str] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
ip_adapter_image: Optional[torch.Tensor] = None,
|
|
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
|
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
|
|
) -> None:
|
|
"""
|
|
Check the validity of the input arguments for the diffusion model.
|
|
|
|
Args:
|
|
prompt (Optional[Union[str, List[str]]]): The prompt text or list of prompt texts.
|
|
height (int): The height of the input image.
|
|
width (int): The width of the input image.
|
|
callback_steps (Optional[int]): The number of steps to perform the callback on.
|
|
negative_prompt (Optional[str]): The negative prompt text.
|
|
prompt_embeds (Optional[torch.Tensor]): The prompt embeddings.
|
|
negative_prompt_embeds (Optional[torch.Tensor]): The negative prompt embeddings.
|
|
ip_adapter_image (Optional[torch.Tensor]): The input adapter image.
|
|
ip_adapter_image_embeds (Optional[torch.Tensor]): The input adapter image embeddings.
|
|
callback_on_step_end_tensor_inputs (Optional[List[str]]): The list of tensor inputs to perform the callback on.
|
|
|
|
Raises:
|
|
ValueError: If `height` or `width` is not divisible by 8.
|
|
ValueError: If `callback_steps` is not a positive integer.
|
|
ValueError: If `callback_on_step_end_tensor_inputs` contains invalid tensor inputs.
|
|
ValueError: If both `prompt` and `prompt_embeds` are provided.
|
|
ValueError: If neither `prompt` nor `prompt_embeds` are provided.
|
|
ValueError: If `prompt` is not of type `str` or `list`.
|
|
ValueError: If both `negative_prompt` and `negative_prompt_embeds` are provided.
|
|
ValueError: If both `prompt_embeds` and `negative_prompt_embeds` are provided and have different shapes.
|
|
ValueError: If both `ip_adapter_image` and `ip_adapter_image_embeds` are provided.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
|
raise ValueError(
|
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
|
)
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
|
def _encode_prompt(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
device: torch.device,
|
|
num_images_per_prompt: int,
|
|
do_classifier_free_guidance: bool,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Encodes the prompt into embeddings.
|
|
|
|
Args:
|
|
prompt (Union[str, List[str]]): The prompt text or a list of prompt texts.
|
|
device (torch.device): The device to use for encoding.
|
|
num_images_per_prompt (int): The number of images per prompt.
|
|
do_classifier_free_guidance (bool): Whether to use classifier-free guidance.
|
|
negative_prompt (Optional[Union[str, List[str]]], optional): The negative prompt text or a list of negative prompt texts. Defaults to None.
|
|
prompt_embeds (Optional[torch.Tensor], optional): The prompt embeddings. Defaults to None.
|
|
negative_prompt_embeds (Optional[torch.Tensor], optional): The negative prompt embeddings. Defaults to None.
|
|
lora_scale (Optional[float], optional): The LoRA scale. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
torch.Tensor: The encoded prompt embeddings.
|
|
"""
|
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
prompt_embeds_tuple = self.encode_prompt(
|
|
prompt=prompt,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=lora_scale,
|
|
**kwargs,
|
|
)
|
|
|
|
# concatenate for backwards comp
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
|
|
|
return prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt: Optional[str],
|
|
device: torch.device,
|
|
num_images_per_prompt: int,
|
|
do_classifier_free_guidance: bool,
|
|
negative_prompt: Optional[str] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
lora_scale (`float`, *optional*):
|
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
|
)
|
|
# Access the `hidden_states` first, that contains a tuple of
|
|
# all the hidden states from the encoder layers. Then index into
|
|
# the tuple to access the hidden states from the desired layer.
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
|
# We also need to apply the final LayerNorm here to not mess with the
|
|
# representations. The `last_hidden_states` that we typically use for
|
|
# obtaining the final prompt representations passes through the LayerNorm
|
|
# layer.
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
|
|
|
if self.text_encoder is not None:
|
|
prompt_embeds_dtype = self.text_encoder.dtype
|
|
elif self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
|
def prepare_latents(
|
|
self,
|
|
batch_size: int,
|
|
num_channels_latents: int,
|
|
height: int,
|
|
width: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
generator: Union[torch.Generator, List[torch.Generator]],
|
|
latents: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Prepare the latent vectors for diffusion.
|
|
|
|
Args:
|
|
batch_size (int): The number of samples in the batch.
|
|
num_channels_latents (int): The number of channels in the latent vectors.
|
|
height (int): The height of the latent vectors.
|
|
width (int): The width of the latent vectors.
|
|
dtype (torch.dtype): The data type of the latent vectors.
|
|
device (torch.device): The device to place the latent vectors on.
|
|
generator (Union[torch.Generator, List[torch.Generator]]): The generator(s) to use for random number generation.
|
|
latents (Optional[torch.Tensor]): The pre-existing latent vectors. If None, new latent vectors will be generated.
|
|
|
|
Returns:
|
|
torch.Tensor: The prepared latent vectors.
|
|
"""
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
int(height) // self.vae_scale_factor,
|
|
int(width) // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(
|
|
self, generator: Union[torch.Generator, List[torch.Generator]], eta: float
|
|
) -> Dict[str, Any]:
|
|
r"""
|
|
Prepare extra keyword arguments for the scheduler step.
|
|
|
|
Args:
|
|
generator (Union[torch.Generator, List[torch.Generator]]): The generator used for sampling.
|
|
eta (float): The value of eta (η) used with the DDIMScheduler. Should be between 0 and 1.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A dictionary containing the extra keyword arguments for the scheduler step.
|
|
"""
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def prepare_image(
|
|
self,
|
|
image: Union[torch.Tensor, PIL.Image.Image, List[Union[torch.Tensor, PIL.Image.Image]]],
|
|
width: int,
|
|
height: int,
|
|
batch_size: int,
|
|
num_images_per_prompt: int,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
do_classifier_free_guidance: bool = False,
|
|
guess_mode: bool = False,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Prepares the input image for processing.
|
|
|
|
Args:
|
|
image (torch.Tensor or PIL.Image.Image or list): The input image(s).
|
|
width (int): The desired width of the image.
|
|
height (int): The desired height of the image.
|
|
batch_size (int): The batch size for processing.
|
|
num_images_per_prompt (int): The number of images per prompt.
|
|
device (torch.device): The device to use for processing.
|
|
dtype (torch.dtype): The data type of the image.
|
|
do_classifier_free_guidance (bool, optional): Whether to perform classifier-free guidance. Defaults to False.
|
|
guess_mode (bool, optional): Whether to use guess mode. Defaults to False.
|
|
|
|
Returns:
|
|
torch.Tensor: The prepared image for processing.
|
|
"""
|
|
if not isinstance(image, torch.Tensor):
|
|
if isinstance(image, PIL.Image.Image):
|
|
image = [image]
|
|
|
|
if isinstance(image[0], PIL.Image.Image):
|
|
images = []
|
|
|
|
for image_ in image:
|
|
image_ = image_.convert("RGB")
|
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
|
image_ = np.array(image_)
|
|
image_ = image_[None, :]
|
|
images.append(image_)
|
|
|
|
image = images
|
|
|
|
image = np.concatenate(image, axis=0)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = (image - 0.5) / 0.5
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
elif isinstance(image[0], torch.Tensor):
|
|
image = torch.cat(image, dim=0)
|
|
|
|
image_batch_size = image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
# image batch size is the same as prompt batch size
|
|
repeat_by = num_images_per_prompt
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance and not guess_mode:
|
|
image = torch.cat([image] * 2)
|
|
|
|
return image
|
|
|
|
def prepare_ref_latents(
|
|
self,
|
|
refimage: torch.Tensor,
|
|
batch_size: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
generator: Union[int, List[int]],
|
|
do_classifier_free_guidance: bool,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Prepares reference latents for generating images.
|
|
|
|
Args:
|
|
refimage (torch.Tensor): The reference image.
|
|
batch_size (int): The desired batch size.
|
|
dtype (torch.dtype): The data type of the tensors.
|
|
device (torch.device): The device to perform computations on.
|
|
generator (int or list): The generator index or a list of generator indices.
|
|
do_classifier_free_guidance (bool): Whether to use classifier-free guidance.
|
|
|
|
Returns:
|
|
torch.Tensor: The prepared reference latents.
|
|
"""
|
|
refimage = refimage.to(device=device, dtype=dtype)
|
|
|
|
# encode the mask image into latents space so we can concatenate it to the latents
|
|
if isinstance(generator, list):
|
|
ref_image_latents = [
|
|
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
|
|
for i in range(batch_size)
|
|
]
|
|
ref_image_latents = torch.cat(ref_image_latents, dim=0)
|
|
else:
|
|
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
|
|
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
|
|
|
|
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
|
|
if ref_image_latents.shape[0] < batch_size:
|
|
if not batch_size % ref_image_latents.shape[0] == 0:
|
|
raise ValueError(
|
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
|
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
|
|
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
|
)
|
|
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
|
|
|
|
# aligning device to prevent device errors when concating it with the latent model input
|
|
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
|
return ref_image_latents
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
|
def run_safety_checker(
|
|
self, image: Union[torch.Tensor, PIL.Image.Image], device: torch.device, dtype: torch.dtype
|
|
) -> Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]:
|
|
r"""
|
|
Runs the safety checker on the given image.
|
|
|
|
Args:
|
|
image (Union[torch.Tensor, PIL.Image.Image]): The input image to be checked.
|
|
device (torch.device): The device to run the safety checker on.
|
|
dtype (torch.dtype): The data type of the input image.
|
|
|
|
Returns:
|
|
(image, has_nsfw_concept) Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: A tuple containing the processed image and
|
|
a boolean indicating whether the image has a NSFW (Not Safe for Work) concept.
|
|
"""
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
else:
|
|
if torch.is_tensor(image):
|
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
|
else:
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
return image, has_nsfw_concept
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
ref_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
attention_auto_machine_weight: float = 1.0,
|
|
gn_auto_machine_weight: float = 1.0,
|
|
style_fidelity: float = 0.5,
|
|
reference_attn: bool = True,
|
|
reference_adain: bool = True,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
ref_image (`torch.Tensor`, `PIL.Image.Image`):
|
|
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
|
|
the type is specified as `torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
|
|
also be accepted as an image.
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
attention_auto_machine_weight (`float`):
|
|
Weight of using reference query for self attention's context.
|
|
If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
|
|
gn_auto_machine_weight (`float`):
|
|
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
|
|
style_fidelity (`float`):
|
|
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
|
|
elif style_fidelity=0.0, prompt more important, else balanced.
|
|
reference_attn (`bool`):
|
|
Whether to use reference query for self attention's context.
|
|
reference_adain (`bool`):
|
|
Whether to use reference adain.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True."
|
|
|
|
# 0. Default height and width to unet
|
|
height, width = self._default_height_width(height, width, ref_image)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Preprocess reference image
|
|
ref_image = self.prepare_image(
|
|
image=ref_image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=prompt_embeds.dtype,
|
|
)
|
|
|
|
# 5. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 6. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 7. Prepare reference latent variables
|
|
ref_image_latents = self.prepare_ref_latents(
|
|
ref_image,
|
|
batch_size * num_images_per_prompt,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
do_classifier_free_guidance,
|
|
)
|
|
|
|
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 9. Modify self attention and group norm
|
|
MODE = "write"
|
|
uc_mask = (
|
|
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
|
|
.type_as(ref_image_latents)
|
|
.bool()
|
|
)
|
|
|
|
def hacked_basic_transformer_inner_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
timestep: Optional[torch.LongTensor] = None,
|
|
cross_attention_kwargs: Dict[str, Any] = None,
|
|
class_labels: Optional[torch.LongTensor] = None,
|
|
):
|
|
if self.use_ada_layer_norm:
|
|
norm_hidden_states = self.norm1(hidden_states, timestep)
|
|
elif self.use_ada_layer_norm_zero:
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
|
)
|
|
else:
|
|
norm_hidden_states = self.norm1(hidden_states)
|
|
|
|
# 1. Self-Attention
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
if self.only_cross_attention:
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
else:
|
|
if MODE == "write":
|
|
self.bank.append(norm_hidden_states.detach().clone())
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
if MODE == "read":
|
|
if attention_auto_machine_weight > self.attn_weight:
|
|
attn_output_uc = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
|
|
# attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
attn_output_c = attn_output_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
attn_output_c[uc_mask] = self.attn1(
|
|
norm_hidden_states[uc_mask],
|
|
encoder_hidden_states=norm_hidden_states[uc_mask],
|
|
**cross_attention_kwargs,
|
|
)
|
|
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
|
|
self.bank.clear()
|
|
else:
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
if self.use_ada_layer_norm_zero:
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
hidden_states = attn_output + hidden_states
|
|
|
|
if self.attn2 is not None:
|
|
norm_hidden_states = (
|
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
|
)
|
|
|
|
# 2. Cross-Attention
|
|
attn_output = self.attn2(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=encoder_attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
hidden_states = attn_output + hidden_states
|
|
|
|
# 3. Feed-forward
|
|
norm_hidden_states = self.norm3(hidden_states)
|
|
|
|
if self.use_ada_layer_norm_zero:
|
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
|
|
ff_output = self.ff(norm_hidden_states)
|
|
|
|
if self.use_ada_layer_norm_zero:
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
hidden_states = ff_output + hidden_states
|
|
|
|
return hidden_states
|
|
|
|
def hacked_mid_forward(self, *args, **kwargs):
|
|
eps = 1e-6
|
|
x = self.original_forward(*args, **kwargs)
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append(mean)
|
|
self.var_bank.append(var)
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
|
|
var_acc = sum(self.var_bank) / float(len(self.var_bank))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
x_uc = (((x - mean) / std) * std_acc) + mean_acc
|
|
x_c = x_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
x_c[uc_mask] = x[uc_mask]
|
|
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
return x
|
|
|
|
def hack_CrossAttnDownBlock2D_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
temb: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
):
|
|
eps = 1e-6
|
|
|
|
# TODO(Patrick, William) - attention mask is not used
|
|
output_states = ()
|
|
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)[0]
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
def hacked_DownBlock2D_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
temb: Optional[torch.Tensor] = None,
|
|
**kwargs: Any,
|
|
) -> Tuple[torch.Tensor, ...]:
|
|
eps = 1e-6
|
|
|
|
output_states = ()
|
|
|
|
for i, resnet in enumerate(self.resnets):
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
def hacked_CrossAttnUpBlock2D_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
|
temb: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
upsample_size: Optional[int] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
eps = 1e-6
|
|
# TODO(Patrick, William) - attention mask is not used
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
|
# pop res hidden states
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
return hidden_states
|
|
|
|
def hacked_UpBlock2D_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
|
temb: Optional[torch.Tensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
eps = 1e-6
|
|
for i, resnet in enumerate(self.resnets):
|
|
# pop res hidden states
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
return hidden_states
|
|
|
|
if reference_attn:
|
|
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
|
|
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
|
|
|
for i, module in enumerate(attn_modules):
|
|
module._original_inner_forward = module.forward
|
|
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
|
|
module.bank = []
|
|
module.attn_weight = float(i) / float(len(attn_modules))
|
|
|
|
if reference_adain:
|
|
gn_modules = [self.unet.mid_block]
|
|
self.unet.mid_block.gn_weight = 0
|
|
|
|
down_blocks = self.unet.down_blocks
|
|
for w, module in enumerate(down_blocks):
|
|
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
|
|
gn_modules.append(module)
|
|
|
|
up_blocks = self.unet.up_blocks
|
|
for w, module in enumerate(up_blocks):
|
|
module.gn_weight = float(w) / float(len(up_blocks))
|
|
gn_modules.append(module)
|
|
|
|
for i, module in enumerate(gn_modules):
|
|
if getattr(module, "original_forward", None) is None:
|
|
module.original_forward = module.forward
|
|
if i == 0:
|
|
# mid_block
|
|
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
|
|
elif isinstance(module, CrossAttnDownBlock2D):
|
|
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
|
|
elif isinstance(module, DownBlock2D):
|
|
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
|
|
elif isinstance(module, CrossAttnUpBlock2D):
|
|
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
|
|
elif isinstance(module, UpBlock2D):
|
|
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
|
|
module.mean_bank = []
|
|
module.var_bank = []
|
|
module.gn_weight *= 2
|
|
|
|
# 10. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# ref only part
|
|
noise = randn_tensor(
|
|
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
|
|
)
|
|
ref_xt = self.scheduler.add_noise(
|
|
ref_image_latents,
|
|
noise,
|
|
t.reshape(
|
|
1,
|
|
),
|
|
)
|
|
ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt
|
|
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
|
|
|
|
MODE = "write"
|
|
self.unet(
|
|
ref_xt,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
# predict the noise residual
|
|
MODE = "read"
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|