* Controlnet training code initial commit Works with circle dataset: https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md * Script for adding a controlnet to existing model * Fix control image transform Control image should be in 0..1 range. * Add license header and remove more unused configs * controlnet training readme * Allow nonlocal model in add_controlnet.py * Formatting * Remove unused code * Code quality * Initialize controlnet in training script * Formatting * Address review comments * doc style * explicit constructor args and submodule names * hub dataset NOTE - not tested * empty prompts * add conditioning image * rename * remove instance data dir * image_transforms -> -1,1 . conditioning_image_transformers -> 0, 1 * nits * remove local rank config I think this isn't necessary in any of our training scripts * validation images * proportion_empty_prompts typo * weight copying to controlnet bug * call log validation fix * fix * gitignore wandb * fix progress bar and resume from checkpoint iteration * initial step fix * log multiple images * fix * fixes * tracker project name configurable * misc * add controlnet requirements.txt * update docs * image labels * small fixes * log validation using existing models for pipeline * fix for deepspeed saving * memory usage docs * Update examples/controlnet/train_controlnet.py Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/train_controlnet.py Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update examples/controlnet/README.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * remove extra is main process check * link to dataset in intro paragraph * remove unnecessary paragraph * note on deepspeed * Update examples/controlnet/README.md Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * assert -> value error * weights and biases note * move images out of git * remove .gitignore --------- Co-authored-by: William Berman <WLBberman@gmail.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
π€ Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, π€ Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.
π€ Diffusers offers three core components:
- State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code.
- Interchangeable noise schedulers for different diffusion speeds and output quality.
- Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
Installation
We recommend installing π€ Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
PyTorch
With pip (official package):
pip install --upgrade diffusers[torch]
With conda (maintained by the community):
conda install -c conda-forge diffusers
Flax
With pip (official package):
pip install --upgrade diffusers[flax]
Apple Silicon (M1/M2) support
Please refer to the How to use Stable Diffusion in Apple Silicon guide.
Quickstart
Generating outputs is super easy with π€ Diffusers. To generate an image from text, use the from_pretrained method to load any pretrained diffusion model (browse the Hub for 4000+ checkpoints):
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
You can also dig into the models and schedulers toolbox to build your own diffusion system:
from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
import numpy as np
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)
sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
input = noise
for t in scheduler.timesteps:
with torch.no_grad():
noisy_residual = model(input, t).sample
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
image
Check out the Quickstart to launch your diffusion journey today!
How to navigate the documentation
| Documentation | What can I learn? |
|---|---|
| Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| Training | Guides for how to train a diffusion model for different tasks with different training techniques. |
Supported pipelines
Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available here
- @hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
- @ermongroup's DDIM implementation, available here
- @yang-song's Score-VE and Score-VP implementations, available here
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.
Citation
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
