1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
YiYi Xu 45f6d52b10 Add Shap-E (#3742)
* refactor prior_transformer

adding conversion script

add pipeline

add step_index from pipeline, + remove permute

add zero pad token

remove copy from statement for betas_for_alpha_bar function

* add

* add

* update conversion script for renderer model

* refactor camera a little bit

* clean up

* style

* fix copies

* Update src/diffusers/schedulers/scheduling_heun_discrete.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* alpha_transform_type

* remove step_index argument

* remove get_sigmas_karras

* remove _yiyi_sigma_to_t

* move the rescale prompt_embeds from prior_transformer to pipeline

* replace baddbmm with einsum to match origial repo

* Revert "replace baddbmm with einsum to match origial repo"

This reverts commit 3f6b435d65.

* add step_index to scale_model_input

* Revert "move the rescale prompt_embeds from prior_transformer to pipeline"

This reverts commit 5b5a8e6be9.

* move rescale from prior_transformer to pipeline

* correct step_index in scale_model_input

* remove print lines

* refactor prior - reduce arguments

* make style

* add prior_image

* arg embedding_proj_norm -> norm_embedding_proj

* add pre-norm for proj_embedding

* move rescale prompt from pipeline to _encode_prompt

* add img2img pipeline

* style

* copies

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

add arg: encoder_hid_proj

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

add new config: norm_in_type

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

add new config: added_emb_type

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

rename out_dim -> clip_embed_dim

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

rename config: out_dim -> clip_embed_dim

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* finish refactor prior_tranformer

* make style

* refactor renderer

* fix

* make style

* refactor img2img

* remove params_proj

* add test

* add upcast_softmax to prior_transformer

* enable num_images_per_prompt, add save_gif utility

* add

* add fast test

* make style

* add slow test

* style

* add test for img2img

* refactor

* enable batching

* style

* refactor scheduler

* update test

* style

* attempt to solve batch related tests timeout

* add doc

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* hardcode rendering related config

* update betas_for_alpha_bar on ddpm_scheduler

* fix copies

* fix

* export_to_gif

* style

* second attempt to speed up batching tests

* add doc page to index

* Remove intermediate clipping

* 3rd attempt to speed up batching tests

* Remvoe time index

* simplify scheduler

* Fix more

* Fix more

* fix more

* make style

* fix schedulers

* fix some more tests

* finish

* add one more test

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

* apply feedbacks

* style

* fix copies

* add one example

* style

* add example for img2img

* fix doc

* fix more doc strings

* size -> frame_size

* style

* update doc

* style

* fix on doc

* update repo name

* improve the usage example in shap-e img2img

* add usage examples in the shap-e docs.

* consolidate examples.

* minor fix.

* update doc

* Apply suggestions from code review

* Apply suggestions from code review

* remove upcast

* Make sure background is white

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

* Apply suggestions from code review

* Finish

* Apply suggestions from code review

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

* Make style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-06 15:20:42 +02:00
2023-07-06 13:37:27 +02:00
2023-07-06 13:37:27 +02:00
2023-07-06 15:20:42 +02:00
2023-07-06 15:20:42 +02:00
2023-07-06 15:20:42 +02:00
2023-07-06 15:20:42 +02:00
2022-09-19 21:58:41 +02:00
2023-03-14 20:16:30 -07:00
2023-02-02 12:46:44 +01:00
2022-05-30 18:21:15 +02:00
2022-10-12 13:22:51 +02:00
2023-07-06 13:37:27 +02:00



GitHub GitHub release Contributor Covenant

πŸ€— Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, πŸ€— Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.

πŸ€— Diffusers offers three core components:

  • State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code.
  • Interchangeable noise schedulers for different diffusion speeds and output quality.
  • Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.

Installation

We recommend installing πŸ€— Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.

PyTorch

With pip (official package):

pip install --upgrade diffusers[torch]

With conda (maintained by the community):

conda install -c conda-forge diffusers

Flax

With pip (official package):

pip install --upgrade diffusers[flax]

Apple Silicon (M1/M2) support

Please refer to the How to use Stable Diffusion in Apple Silicon guide.

Quickstart

Generating outputs is super easy with πŸ€— Diffusers. To generate an image from text, use the from_pretrained method to load any pretrained diffusion model (browse the Hub for 4000+ checkpoints):

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]

You can also dig into the models and schedulers toolbox to build your own diffusion system:

from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
import numpy as np

scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)

sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
input = noise

for t in scheduler.timesteps:
    with torch.no_grad():
        noisy_residual = model(input, t).sample
        prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
        input = prev_noisy_sample

image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
image

Check out the Quickstart to launch your diffusion journey today!

How to navigate the documentation

Documentation What can I learn?
Tutorial A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model.
Loading Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers.
Pipelines for inference Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library.
Optimization Guides for how to optimize your diffusion model to run faster and consume less memory.
Training Guides for how to train a diffusion model for different tasks with different training techniques.

Contribution

We ❀️ contributions from the open-source community! If you want to contribute to this library, please check out our Contribution guide. You can look out for issues you'd like to tackle to contribute to the library.

Also, say πŸ‘‹ in our public Discord channel Join us on Discord. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out β˜•.

Task Pipeline πŸ€— Hub
Unconditional Image Generation DDPM google/ddpm-ema-church-256
Text-to-Image Stable Diffusion Text-to-Image runwayml/stable-diffusion-v1-5
Text-to-Image unclip kakaobrain/karlo-v1-alpha
Text-to-Image if DeepFloyd/IF-I-XL-v1.0
Text-guided Image-to-Image Controlnet lllyasviel/sd-controlnet-canny
Text-guided Image-to-Image Instruct Pix2Pix timbrooks/instruct-pix2pix
Text-guided Image-to-Image Stable Diffusion Image-to-Image runwayml/stable-diffusion-v1-5
Text-guided Image Inpainting Stable Diffusion Inpaint runwayml/stable-diffusion-inpainting
Image Variation Stable Diffusion Image Variation lambdalabs/sd-image-variations-diffusers
Super Resolution Stable Diffusion Upscale stabilityai/stable-diffusion-x4-upscaler
Super Resolution Stable Diffusion Latent Upscale stabilityai/sd-x2-latent-upscaler

Thank you for using us ❀️

Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

  • @CompVis' latent diffusion models library, available here
  • @hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
  • @ermongroup's DDIM implementation, available here
  • @yang-song's Score-VE and Score-VP implementations, available here

We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.

Citation

@misc{von-platen-etal-2022-diffusers,
  author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
  title = {Diffusers: State-of-the-art diffusion models},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/diffusers}}
}
Description
πŸ€— Diffusers: соврСмСнныС Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ для Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΈΠ΄Π΅ΠΎ ΠΈ Π°ΡƒΠ΄ΠΈΠΎ Π² PyTorch.
Readme Apache-2.0 Cite this repository 754 MiB
Languages
Python 100%