1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/docs/source/ko/using-diffusers/contribute_pipeline.md
Sayak Paul 30e5e81d58 change to 2024 in the license (#6902)
change to 2024
2024-02-08 08:19:31 -10:00

183 lines
9.3 KiB
Markdown

<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์— ๊ธฐ์—ฌํ•˜๋Š” ๋ฐฉ๋ฒ•
<Tip>
๐Ÿ’ก ๋ชจ๋“  ์‚ฌ๋žŒ์ด ์†๋„ ์ €ํ•˜ ์—†์ด ์‰ฝ๊ฒŒ ์ž‘์—…์„ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ถ”๊ฐ€ํ•˜๋Š” ์ด์œ ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ GitHub ์ด์Šˆ [#841](https://github.com/huggingface/diffusers/issues/841)๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.
</Tip>
์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ์‚ฌ์šฉํ•˜๋ฉด [`DiffusionPipeline`] ์œ„์— ์›ํ•˜๋Š” ์ถ”๊ฐ€ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. `DiffusionPipeline` ์œ„์— ๊ตฌ์ถ•ํ•  ๋•Œ์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ ๋ˆ„๊ตฌ๋‚˜ ์ธ์ˆ˜๋ฅผ ํ•˜๋‚˜๋งŒ ์ถ”๊ฐ€ํ•˜๋ฉด ํŒŒ์ดํ”„๋ผ์ธ์„ ๋กœ๋“œํ•˜๊ณ  ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์–ด ์ปค๋ฎค๋‹ˆํ‹ฐ๊ฐ€ ๋งค์šฐ ์‰ฝ๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์ด๋ฒˆ ๊ฐ€์ด๋“œ์—์„œ๋Š” ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.
๊ฐ„๋‹จํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด `UNet`์ด ๋‹จ์ผ forward pass๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์Šค์ผ€์ค„๋Ÿฌ๋ฅผ ํ•œ ๋ฒˆ ํ˜ธ์ถœํ•˜๋Š” "one-step" ํŒŒ์ดํ”„๋ผ์ธ์„ ๋งŒ๋“ค๊ฒ ์Šต๋‹ˆ๋‹ค.
## ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ์œ„ํ•œ `one_step_unet.py` ํŒŒ์ผ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค. ์ด ํŒŒ์ผ์—์„œ, Hub์—์„œ ๋ชจ๋ธ ๊ฐ€์ค‘์น˜์™€ ์Šค์ผ€์ค„๋Ÿฌ ๊ตฌ์„ฑ์„ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ๋„๋ก [`DiffusionPipeline`]์„ ์ƒ์†ํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ ํด๋ž˜์Šค๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. one-step ํŒŒ์ดํ”„๋ผ์ธ์—๋Š” `UNet`๊ณผ ์Šค์ผ€์ค„๋Ÿฌ๊ฐ€ ํ•„์š”ํ•˜๋ฏ€๋กœ ์ด๋ฅผ `__init__` ํ•จ์ˆ˜์— ์ธ์ˆ˜๋กœ ์ถ”๊ฐ€ํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค:
```python
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
```
ํŒŒ์ดํ”„๋ผ์ธ๊ณผ ๊ทธ ๊ตฌ์„ฑ์š”์†Œ(`unet` and `scheduler`)๋ฅผ [`~DiffusionPipeline.save_pretrained`]์œผ๋กœ ์ €์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋ ค๋ฉด `register_modules` ํ•จ์ˆ˜์— ์ถ”๊ฐ€ํ•˜์„ธ์š”:
```diff
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
```
์ด์ œ '์ดˆ๊ธฐํ™”' ๋‹จ๊ณ„๊ฐ€ ์™„๋ฃŒ๋˜์—ˆ์œผ๋‹ˆ forward pass๋กœ ์ด๋™ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค! ๐Ÿ”ฅ
## Forward pass ์ •์˜
Forward pass ์—์„œ๋Š”(`__call__`๋กœ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค) ์›ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์™„์ „ํ•œ ์ฐฝ์ž‘ ์ž์œ ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๋†€๋ผ์šด one-step ํŒŒ์ดํ”„๋ผ์ธ์˜ ๊ฒฝ์šฐ, ์ž„์˜์˜ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ณ  `timestep=1`์„ ์„ค์ •ํ•˜์—ฌ `unet`๊ณผ `scheduler`๋ฅผ ํ•œ ๋ฒˆ๋งŒ ํ˜ธ์ถœํ•ฉ๋‹ˆ๋‹ค:
```diff
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
+ def __call__(self):
+ image = torch.randn(
+ (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
+ )
+ timestep = 1
+ model_output = self.unet(image, timestep).sample
+ scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
+ return scheduler_output
```
๋๋‚ฌ์Šต๋‹ˆ๋‹ค! ๐Ÿš€ ์ด์ œ ์ด ํŒŒ์ดํ”„๋ผ์ธ์— `unet`๊ณผ `scheduler`๋ฅผ ์ „๋‹ฌํ•˜์—ฌ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```python
from diffusers import DDPMScheduler, UNet2DModel
scheduler = DDPMScheduler()
unet = UNet2DModel()
pipeline = UnetSchedulerOneForwardPipeline(unet=unet, scheduler=scheduler)
output = pipeline()
```
ํ•˜์ง€๋งŒ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์กฐ๊ฐ€ ๋™์ผํ•œ ๊ฒฝ์šฐ ๊ธฐ์กด ๊ฐ€์ค‘์น˜๋ฅผ ํŒŒ์ดํ”„๋ผ์ธ์— ๋กœ๋“œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด one-step ํŒŒ์ดํ”„๋ผ์ธ์— [`google/ddpm-cifar10-32`](https://huggingface.co/google/ddpm-cifar10-32) ๊ฐ€์ค‘์น˜๋ฅผ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```python
pipeline = UnetSchedulerOneForwardPipeline.from_pretrained("google/ddpm-cifar10-32")
output = pipeline()
```
## ํŒŒ์ดํ”„๋ผ์ธ ๊ณต์œ 
๐ŸงจDiffusers [๋ฆฌํฌ์ง€ํ† ๋ฆฌ](https://github.com/huggingface/diffusers)์—์„œ Pull Request๋ฅผ ์—ด์–ด [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) ํ•˜์œ„ ํด๋”์— `one_step_unet.py`์˜ ๋ฉ‹์ง„ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ถ”๊ฐ€ํ•˜์„ธ์š”.
๋ณ‘ํ•ฉ์ด ๋˜๋ฉด, `diffusers >= 0.4.0`์ด ์„ค์น˜๋œ ์‚ฌ์šฉ์ž๋ผ๋ฉด ๋ˆ„๊ตฌ๋‚˜ `custom_pipeline` ์ธ์ˆ˜์— ์ง€์ •ํ•˜์—ฌ ์ด ํŒŒ์ดํ”„๋ผ์ธ์„ ๋งˆ์ˆ ์ฒ˜๋Ÿผ ๐Ÿช„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```
์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ณต์œ ํ•˜๋Š” ๋˜ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์€ Hub ์—์„œ ์„ ํ˜ธํ•˜๋Š” [๋ชจ๋ธ ๋ฆฌํฌ์ง€ํ† ๋ฆฌ](https://huggingface.co/docs/hub/models-uploading)์— ์ง์ ‘ `one_step_unet.py` ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. `one_step_unet.py` ํŒŒ์ผ์„ ์ง€์ •ํ•˜๋Š” ๋Œ€์‹  ๋ชจ๋ธ ์ €์žฅ์†Œ id๋ฅผ `custom_pipeline` ์ธ์ˆ˜์— ์ „๋‹ฌํ•˜์„ธ์š”:
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="stevhliu/one_step_unet")
```
๋‹ค์Œ ํ‘œ์—์„œ ๋‘ ๊ฐ€์ง€ ๊ณต์œ  ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ž์‹ ์—๊ฒŒ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์˜ต์…˜์„ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ์ •๋ณด๋ฅผ ํ™•์ธํ•˜์„ธ์š”:
| | GitHub ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ | HF Hub ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ |
|----------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| ์‚ฌ์šฉ๋ฒ• | ๋™์ผ | ๋™์ผ |
| ๋ฆฌ๋ทฐ ๊ณผ์ • | ๋ณ‘ํ•ฉํ•˜๊ธฐ ์ „์— GitHub์—์„œ Pull Request๋ฅผ ์—ด๊ณ  Diffusers ํŒ€์˜ ๊ฒ€ํ†  ๊ณผ์ •์„ ๊ฑฐ์นฉ๋‹ˆ๋‹ค. ์†๋„๊ฐ€ ๋А๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. | ๊ฒ€ํ†  ์—†์ด Hub ์ €์žฅ์†Œ์— ๋ฐ”๋กœ ์—…๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค. ๊ฐ€์žฅ ๋น ๋ฅธ ์›Œํฌํ”Œ๋กœ์šฐ ์ž…๋‹ˆ๋‹ค. |
| ๊ฐ€์‹œ์„ฑ | ๊ณต์‹ Diffusers ์ €์žฅ์†Œ ๋ฐ ๋ฌธ์„œ์— ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. | HF ํ—ˆ๋ธŒ ํ”„๋กœํ•„์— ํฌํ•จ๋˜๋ฉฐ ๊ฐ€์‹œ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ž์‹ ์˜ ์‚ฌ์šฉ๋Ÿ‰/ํ”„๋กœ๋ชจ์…˜์— ์˜์กดํ•ฉ๋‹ˆ๋‹ค. |
<Tip>
๐Ÿ’ก ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ ํŒŒ์ผ์— ์›ํ•˜๋Š” ํŒจํ‚ค์ง€๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž๊ฐ€ ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ๋ชจ๋“  ๊ฒƒ์ด ์ •์ƒ์ ์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ํŒŒ์ดํ”„๋ผ์ธ์ด ์ž๋™์œผ๋กœ ๊ฐ์ง€๋˜๋ฏ€๋กœ `DiffusionPipeline`์—์„œ ์ƒ์†ํ•˜๋Š” ํŒŒ์ดํ”„๋ผ์ธ ํด๋ž˜์Šค๊ฐ€ ํ•˜๋‚˜๋งŒ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.
</Tip>
## ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์€ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋‚˜์š”?
์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์€ [`DiffusionPipeline`]์„ ์ƒ์†ํ•˜๋Š” ํด๋ž˜์Šค์ž…๋‹ˆ๋‹ค:
- [`custom_pipeline`] ์ธ์ˆ˜๋กœ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
- ๋ชจ๋ธ ๊ฐ€์ค‘์น˜ ๋ฐ ์Šค์ผ€์ค„๋Ÿฌ ๊ตฌ์„ฑ์€ [`pretrained_model_name_or_path`]์—์„œ ๋กœ๋“œ๋ฉ๋‹ˆ๋‹ค.
- ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ๊ธฐ๋Šฅ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ฝ”๋“œ๋Š” `pipeline.py` ํŒŒ์ผ์— ์ •์˜๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
๊ณต์‹ ์ €์žฅ์†Œ์—์„œ ๋ชจ๋“  ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ€์ค‘์น˜๋ฅผ ๋กœ๋“œํ•  ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ฒฝ์šฐ ๋‹ค๋ฅธ ๊ตฌ์„ฑ ์š”์†Œ๋Š” ํŒŒ์ดํ”„๋ผ์ธ์— ์ง์ ‘ ์ „๋‹ฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค:
```python
from diffusers import DiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPModel
model_id = "CompVis/stable-diffusion-v1-4"
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
scheduler=scheduler,
torch_dtype=torch.float16,
)
```
์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์˜ ๋งˆ๋ฒ•์€ ๋‹ค์Œ ์ฝ”๋“œ์— ๋‹ด๊ฒจ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์ฝ”๋“œ๋ฅผ ํ†ตํ•ด ์ปค๋ฎค๋‹ˆํ‹ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ GitHub ๋˜๋Š” Hub์—์„œ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ชจ๋“  ๐Ÿงจ Diffusers ํŒจํ‚ค์ง€์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
```python
# 2. ํŒŒ์ดํ”„๋ผ์ธ ํด๋ž˜์Šค๋ฅผ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž ์ง€์ • ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ Hub์—์„œ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค
# ๋ช…์‹œ์  ํด๋ž˜์Šค์—์„œ ๋กœ๋“œํ•˜๋Š” ๊ฒฝ์šฐ, ์ด๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
if custom_pipeline is not None:
pipeline_class = get_class_from_dynamic_module(
custom_pipeline, module_file=CUSTOM_PIPELINE_FILE_NAME, cache_dir=custom_pipeline
)
elif cls != DiffusionPipeline:
pipeline_class = cls
else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
```