mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
055ef77362020f87b4a7d802bf5a5824c3fc8ea0
Diffusers
Library structure:
├── models
│ ├── dalle2
│ │ ├── modeling_dalle2.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ ├── ddpm
│ │ ├── modeling_ddpm.py
│ │ ├── README.md
│ │ └── run_ddpm.py
│ ├── glide
│ │ ├── modeling_glide.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ ├── imagen
│ │ ├── modeling_dalle2.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ └── latent_diffusion
│ ├── modeling_latent_diffusion.py
│ ├── README.md
│ └── run_latent_diffusion.py
├── src
│ └── diffusers
│ ├── configuration_utils.py
│ ├── __init__.py
│ ├── modeling_utils.py
│ ├── models
│ │ └── unet.py
│ ├── processors
│ └── samplers
│ ├── gaussian.py
├── tests
│ └── test_modeling_utils.py
Dummy Example
from diffusers import UNetModel, GaussianDiffusion
import torch
# 1. Load model
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")
# 2. Do one denoising step with model
batch_size, num_channels, height, width = 1, 3, 32, 32
dummy_noise = torch.ones((batch_size, num_channels, height, width))
time_step = torch.tensor([10])
image = unet(dummy_noise, time_step)
# 3. Load sampler
sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")
# 4. Sample image from sampler passing the model
image = sampler.sample(model, batch_size=1)
print(image)
Description
🤗 Diffusers: современные диффузионные модели для генерации изображений, видео и аудио в PyTorch.
Languages
Python
100%