1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/zh/modular_diffusers/quickstart.md
Dhruv Nair ba0e732eb0 [Modular] Consolidate load_default_components into load_components (#12217)
* update

* Apply style fixes

* update

* update

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-28 19:55:02 +05:30

347 lines
16 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!--版权所有 2025 The HuggingFace Team。保留所有权利。
根据Apache许可证2.0版("许可证")授权;除非符合许可证,否则不得使用此文件。您可以在
http://www.apache.org/licenses/LICENSE-2.0
获取许可证的副本。
除非适用法律要求或书面同意,根据许可证分发的软件按"原样"分发,无任何明示或暗示的担保或条件。有关许可证下特定语言的管理权限和限制,请参阅许可证。
-->
# 快速入门
模块化Diffusers是一个快速构建灵活和可定制管道的框架。模块化Diffusers的核心是[`ModularPipelineBlocks`],可以与其他块组合以适应新的工作流程。这些块被转换为[`ModularPipeline`],一个开发者可以使用的友好用户界面。
本文档将向您展示如何使用模块化框架实现[Differential Diffusion](https://differential-diffusion.github.io/)管道。
## ModularPipelineBlocks
[`ModularPipelineBlocks`]是*定义*,指定管道中单个步骤的组件、输入、输出和计算逻辑。有四种类型的块。
- [`ModularPipelineBlocks`]是最基本的单一步骤块。
- [`SequentialPipelineBlocks`]是一个多块,线性组合其他块。一个块的输出是下一个块的输入。
- [`LoopSequentialPipelineBlocks`]是一个多块,迭代运行,专为迭代工作流程设计。
- [`AutoPipelineBlocks`]是一个针对不同工作流程的块集合,它根据输入选择运行哪个块。它旨在方便地将多个工作流程打包到单个管道中。
[Differential Diffusion](https://differential-diffusion.github.io/)是一个图像到图像的工作流程。从`IMAGE2IMAGE_BLOCKS`预设开始,这是一个用于图像到图像生成的`ModularPipelineBlocks`集合。
```py
from diffusers.modular_pipelines.stable_diffusion_xl import IMAGE2IMAGE_BLOCKS
IMAGE2IMAGE_BLOCKS = InsertableDict([
("text_encoder", StableDiffusionXLTextEncoderStep),
("image_encoder", StableDiffusionXLVaeEncoderStep),
("input", StableDiffusionXLInputStep),
("set_timesteps", StableDiffusionXLImg2ImgSetTimestepsStep),
("prepare_latents", StableDiffusionXLImg2ImgPrepareLatentsStep),
("prepare_add_cond", StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep),
("denoise", StableDiffusionXLDenoiseStep),
("decode", StableDiffusionXLDecodeStep)
])
```
## 管道和块状态
模块化Diffusers使用*状态*在块之间通信数据。有两种类型的状态。
- [`PipelineState`]是一个全局状态,可用于跟踪所有块的所有输入和输出。
- [`BlockState`]是[`PipelineState`]中相关变量的局部视图,用于单个块。
## 自定义块
[Differential Diffusion](https://differential-diffusion.github.io/) 与标准的图像到图像转换在其 `prepare_latents``denoise` 块上有所不同。所有其他块都可以重用,但你需要修改这两个。
通过复制和修改现有的块,为 `prepare_latents``denoise` 创建占位符 `ModularPipelineBlocks`
打印 `denoise` 块,可以看到它由 [`LoopSequentialPipelineBlocks`] 组成,包含三个子块,`before_denoiser``denoiser``after_denoiser`。只需要修改 `before_denoiser` 子块,根据变化图为去噪器准备潜在输入。
```py
denoise_blocks = IMAGE2IMAGE_BLOCKS["denoise"]()
print(denoise_blocks)
```
用新的 `SDXLDiffDiffLoopBeforeDenoiser` 块替换 `StableDiffusionXLLoopBeforeDenoiser` 子块。
```py
# 复制现有块作为占位符
class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks):
"""Copied from StableDiffusionXLImg2ImgPrepareLatentsStep - will modify later"""
# ... 与 StableDiffusionXLImg2ImgPrepareLatentsStep 相同的实现
class SDXLDiffDiffDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLLoopDenoiser, StableDiffusionXLLoopAfterDenoiser]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
```
### prepare_latents
`prepare_latents` 块需要进行以下更改。
- 一个处理器来处理变化图
- 一个新的 `inputs` 来接受用户提供的变化图,`timestep` 用于预计算所有潜在变量和 `num_inference_steps` 来创建更新图像区域的掩码
- 更新 `__call__` 方法中的计算,用于处理变化图和创建掩码,并将其存储在 [`BlockState`] 中
```diff
class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks):
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKL),
ComponentSpec("scheduler", EulerDiscreteScheduler),
+ ComponentSpec("mask_processor", VaeImageProcessor, config=FrozenDict({"do_normalize": False, "do_convert_grayscale": True}))
]
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("generator"),
+ InputParam("diffdiff_map", required=True),
- InputParam("latent_timestep", required=True, type_hint=torch.Tensor),
+ InputParam("timesteps", type_hint=torch.Tensor),
+ InputParam("num_inference_steps", type_hint=int),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
+ OutputParam("original_latents", type_hint=torch.Tensor),
+ OutputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, state: PipelineState):
# ... existing logic ...
+ # Process change map and create masks
+ diffdiff_map = components.mask_processor.preprocess(block_state.diffdiff_map, height=latent_height, width=latent_width)
+ thresholds = torch.arange(block_state.num_inference_steps, dtype=diffdiff_map.dtype) / block_state.num_inference_steps
+ block_state.diffdiff_masks = diffdiff_map > (thresholds + (block_state.denoising_start or 0))
+ block_state.original_latents = block_state.latents
```
### 去噪
`before_denoiser` 子块需要进行以下更改。
- 新的 `inputs` 以接受 `denoising_start` 参数,`original_latents``diffdiff_masks` 来自 `prepare_latents`
- 更新 `__call__` 方法中的计算以应用 Differential Diffusion
```diff
class SDXLDiffDiffLoopBeforeDenoiser(ModularPipelineBlocks):
@property
def description(self) -> str:
return (
"Step within the denoising loop for differential diffusion that prepare the latent input for the denoiser"
)
@property
def inputs(self) -> List[str]:
return [
InputParam("latents", required=True, type_hint=torch.Tensor),
+ InputParam("denoising_start"),
+ InputParam("original_latents", type_hint=torch.Tensor),
+ InputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, block_state, i, t):
+ # Apply differential diffusion logic
+ if i == 0 and block_state.denoising_start is None:
+ block_state.latents = block_state.original_latents[:1]
+ else:
+ block_state.mask = block_state.diffdiff_masks[i].unsqueeze(0).unsqueeze(1)
+ block_state.latents = block_state.original_latents[i] * block_state.mask + block_state.latents * (1 - block_state.mask)
# ... rest of existing logic ...
```
## 组装块
此时,您应该拥有创建 [`ModularPipeline`] 所需的所有块。
复制现有的 `IMAGE2IMAGE_BLOCKS` 预设,对于 `set_timesteps` 块,使用 `TEXT2IMAGE_BLOCKS` 中的 `set_timesteps`,因为 Differential Diffusion 不需要 `strength` 参数。
`prepare_latents``denoise` 块设置为您刚刚修改的 `SDXLDiffDiffPrepareLatentsStep``SDXLDiffDiffDenoiseStep` 块。
调用 [`SequentialPipelineBlocks.from_blocks_dict`] 在块上创建一个 `SequentialPipelineBlocks`
```py
DIFFDIFF_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
DIFFDIFF_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
DIFFDIFF_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
DIFFDIFF_BLOCKS["denoise"] = SDXLDiffDiffDenoiseStep
dd_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_BLOCKS)
print(dd_blocks)
```
## ModularPipeline
将 [`SequentialPipelineBlocks`] 转换为 [`ModularPipeline`],使用 [`ModularPipeline.init_pipeline`] 方法。这会初始化从 `modular_model_index.json` 文件加载的预期组件。通过调用 [`ModularPipeline.load_defau
lt_components`]。
初始化[`ComponentManager`]时传入pipeline是一个好主意以帮助管理不同的组件。一旦调用[`~ModularPipeline.load_components`],组件就会被注册到[`ComponentManager`]中,并且可以在工作流之间共享。下面的例子使用`collection`参数为组件分配了一个`"diffdiff"`标签,以便更好地组织。
```py
from diffusers.modular_pipelines import ComponentsManager
components = ComponentManager()
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", components_manager=components, collection="diffdiff")
dd_pipeline.load_default_componenets(torch_dtype=torch.float16)
dd_pipeline.to("cuda")
```
## 添加工作流
可以向[`ModularPipeline`]添加其他工作流以支持更多功能而无需从头重写整个pipeline。
本节演示如何添加IP-Adapter或ControlNet。
### IP-Adapter
Stable Diffusion XL已经有一个预设的IP-Adapter块你可以使用并且不需要对现有的Differential Diffusion pipeline进行任何更改。
```py
from diffusers.modular_pipelines.stable_diffusion_xl.encoders import StableDiffusionXLAutoIPAdapterStep
ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
```
使用[`sub_blocks.insert`]方法将其插入到[`ModularPipeline`]中。下面的例子在位置`0`插入了`ip_adapter_block`。打印pipeline可以看到`ip_adapter_block`被添加了,并且它需要一个`ip_adapter_image`。这也向pipeline添加了两个组件`image_encoder``feature_extractor`
```py
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
调用[`~ModularPipeline.init_pipeline`]来初始化一个[`ModularPipeline`],并使用[`~ModularPipeline.load_components`]加载模型组件。加载并设置IP-Adapter以运行pipeline。
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device=device).manual_seed(42)
image = dd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
ip_adapter_image=ip_adapter_image,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
### ControlNet
Stable Diffusion XL 已经预设了一个可以立即使用的 ControlNet 块。
```py
from diffusers.modular_pipelines.stable_diffusion_xl.modular_blocks import StableDiffusionXLAutoControlNetInputStep
control_input_block = StableDiffusionXLAutoControlNetInputStep()
```
然而,它需要修改 `denoise` 块,因为那是 ControlNet 将控制信息注入到 UNet 的地方。
通过将 `StableDiffusionXLLoopDenoiser` 子块替换为 `StableDiffusionXLControlNetLoopDenoiser` 来修改 `denoise` 块。
```py
class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLControlNetLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
插入 `controlnet_input` 块并用新的 `controlnet_denoise_block` 替换 `denoise` 块。初始化一个 [`ModularPipeline`] 并将 [`~ModularPipeline.load_components`] 加载到其中。
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device=device).manual_seed(42)
image = dd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
control_image=control_image,
controlnet_conditioning_scale=0.5,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
### AutoPipelineBlocks
差分扩散、IP-Adapter 和 ControlNet 工作流可以通过使用 [`AutoPipelineBlocks`] 捆绑到一个单一的 [`ModularPipeline`] 中。这允许根据输入如 `control_image``ip_adapter_image` 自动选择要运行的子块。如果没有传递这些输入,则默认为差分扩散。
使用 `block_trigger_inputs` 仅在提供 `control_image` 输入时运行 `SDXLDiffDiffControlNetDenoiseStep` 块。否则,使用 `SDXLDiffDiffDenoiseStep`
```py
class SDXLDiffDiffAutoDenoiseStep(AutoPipelineBlocks):
block_classes = [SDXLDiffDiffControlNetDenoiseStep, SDXLDiffDiffDenoiseStep]
block_names = ["contr
olnet_denoise", "denoise"]
block_trigger_inputs = ["controlnet_cond", None]
```
添加 `ip_adapter``controlnet_input` 块。
```py
DIFFDIFF_AUTO_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
DIFFDIFF_AUTO_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
DIFFDIFF_AUTO_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
DIFFDIFF_AUTO_BLOCKS["denoise"] = SDXLDiffDiffAutoDenoiseStep
DIFFDIFF_AUTO_BLOCKS.insert("ip_adapter", StableDiffusionXLAutoIPAdapterStep, 0)
DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoInput, 7)
```
调用 [`SequentialPipelineBlocks.from_blocks_dict`] 来创建一个 [`SequentialPipelineBlocks`] 并创建一个 [`ModularPipeline`] 并加载模型组件以运行。
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
```
## 分享
使用 [`~ModularPipeline.save_pretrained`] 将您的 [`ModularPipeline`] 添加到 Hub并将 `push_to_hub` 参数设置为 `True`
```py
dd_pipeline.save_pretrained("YiYiXu/test_modular_doc", push_to_hub=True)
```
其他用户可以使用 [`~ModularPipeline.from_pretrained`] 加载 [`ModularPipeline`]。
```py
import torch
from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
```