mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Use HF Papers * Apply style fixes --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
50 lines
2.6 KiB
Markdown
50 lines
2.6 KiB
Markdown
# PromptDiffusion Pipeline
|
|
|
|
From the project [page](https://zhendong-wang.github.io/prompt-diffusion.github.io/)
|
|
|
|
"With a prompt consisting of a task-specific example pair of images and text guidance, and a new query image, Prompt Diffusion can comprehend the desired task and generate the corresponding output image on both seen (trained) and unseen (new) task types."
|
|
|
|
For any usage questions, please refer to the [paper](https://huggingface.co/papers/2305.01115).
|
|
|
|
Prepare models by converting them from the [checkpoint](https://huggingface.co/zhendongw/prompt-diffusion)
|
|
|
|
To convert the controlnet, use cldm_v15.yaml from the [repository](https://github.com/Zhendong-Wang/Prompt-Diffusion/tree/main/models/):
|
|
|
|
```bash
|
|
python convert_original_promptdiffusion_to_diffusers.py --checkpoint_path path-to-network-step04999.ckpt --original_config_file path-to-cldm_v15.yaml --dump_path path-to-output-directory
|
|
```
|
|
|
|
To learn about how to convert the fine-tuned stable diffusion model, see the [Load different Stable Diffusion formats guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/other-formats).
|
|
|
|
|
|
```py
|
|
import torch
|
|
from diffusers import UniPCMultistepScheduler
|
|
from diffusers.utils import load_image
|
|
from promptdiffusioncontrolnet import PromptDiffusionControlNetModel
|
|
from pipeline_prompt_diffusion import PromptDiffusionPipeline
|
|
|
|
|
|
from PIL import ImageOps
|
|
|
|
image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true"))
|
|
|
|
image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true")
|
|
query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true"))
|
|
|
|
# load prompt diffusion controlnet and prompt diffusion
|
|
|
|
controlnet = PromptDiffusionControlNetModel.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16)
|
|
model_id = "path-to-model"
|
|
pipe = PromptDiffusionPipeline.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="base", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16")
|
|
|
|
# speed up diffusion process with faster scheduler and memory optimization
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
# remove following line if xformers is not installed
|
|
pipe.enable_xformers_memory_efficient_attention()
|
|
pipe.enable_model_cpu_offload()
|
|
# generate image
|
|
generator = torch.manual_seed(0)
|
|
image = pipe("a tortoise", num_inference_steps=20, generator=generator, image_pair=[image_a,image_b], image=query).images[0]
|
|
```
|