1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/docs/source/zh/training/text_inversion.md
Steven Liu cc5b31ffc9 [docs] Migrate syntax (#12390)
* change syntax

* make style
2025-09-30 10:11:19 -07:00

288 lines
12 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!--版权声明 2025 由 HuggingFace 团队所有。保留所有权利。
根据 Apache 许可证 2.0 版("许可证")授权;除非符合许可证要求,否则不得使用本文件。
您可以通过以下网址获取许可证副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,本软件按"原样"分发,不附带任何明示或暗示的担保或条件。详见许可证中规定的特定语言权限和限制。
-->
# 文本反转Textual Inversion
[文本反转](https://hf.co/papers/2208.01618)是一种训练技术,仅需少量示例图像即可个性化图像生成模型。该技术通过学习和更新文本嵌入(新嵌入会绑定到提示中必须使用的特殊词汇)来匹配您提供的示例图像。
如果在显存有限的GPU上训练建议在训练命令中启用`gradient_checkpointing``mixed_precision`参数。您还可以通过[xFormers](../optimization/xformers)使用内存高效注意力机制来减少内存占用。JAX/Flax训练也支持在TPU和GPU上进行高效训练但不支持梯度检查点或xFormers。在配置与PyTorch相同的情况下Flax训练脚本的速度至少应快70%
本指南将探索[textual_inversion.py](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py)脚本,帮助您更熟悉其工作原理,并了解如何根据自身需求进行调整。
运行脚本前,请确保从源码安装库:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
进入包含训练脚本的示例目录,并安装所需依赖:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/textual_inversion
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/textual_inversion
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
> [!TIP]
> 🤗 Accelerate 是一个帮助您在多GPU/TPU或混合精度环境下训练的工具库。它会根据硬件和环境自动配置训练设置。查看🤗 Accelerate [快速入门](https://huggingface.co/docs/accelerate/quicktour)了解更多。
初始化🤗 Accelerate环境
```bash
accelerate config
```
要设置默认的🤗 Accelerate环境不选择任何配置
```bash
accelerate config default
```
如果您的环境不支持交互式shell如notebook可以使用
```py
from accelerate.utils import write_basic_config
write_basic_config()
```
最后,如果想在自定义数据集上训练模型,请参阅[创建训练数据集](create_dataset)指南,了解如何创建适用于训练脚本的数据集。
> [!TIP]
> 以下部分重点介绍训练脚本中需要理解的关键修改点,但未涵盖脚本所有细节。如需深入了解,可随时查阅[脚本源码](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py),如有疑问欢迎反馈。
## 脚本参数
训练脚本包含众多参数,便于您定制训练过程。所有参数及其说明都列在[`parse_args()`](https://github.com/huggingface/diffusers/blob/839c2a5ece0af4e75530cb520d77bc7ed8acf474/examples/textual_inversion/textual_inversion.py#L176)函数中。Diffusers为每个参数提供了默认值如训练批次大小和学习率但您可以通过训练命令自由调整这些值。
例如将梯度累积步数增加到默认值1以上
```bash
accelerate launch textual_inversion.py \
--gradient_accumulation_steps=4
```
其他需要指定的基础重要参数包括:
- `--pretrained_model_name_or_path`Hub上的模型名称或本地预训练模型路径
- `--train_data_dir`:包含训练数据集(示例图像)的文件夹路径
- `--output_dir`:训练模型保存位置
- `--push_to_hub`是否将训练好的模型推送至Hub
- `--checkpointing_steps`:训练过程中保存检查点的频率;若训练意外中断,可通过在命令中添加`--resume_from_checkpoint`从该检查点恢复训练
- `--num_vectors`:学习嵌入的向量数量;增加此参数可提升模型效果,但会提高训练成本
- `--placeholder_token`:绑定学习嵌入的特殊词汇(推理时需在提示中使用该词)
- `--initializer_token`:大致描述训练目标的单字词汇(如物体或风格)
- `--learnable_property`:训练目标是学习新"风格"(如梵高画风)还是"物体"(如您的宠物狗)
## 训练脚本
与其他训练脚本不同textual_inversion.py包含自定义数据集类[`TextualInversionDataset`](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L487),用于创建数据集。您可以自定义图像尺寸、占位符词汇、插值方法、是否裁剪图像等。如需修改数据集创建方式,可调整`TextualInversionDataset`类。
接下来,在[`main()`](https://github.com/huggingface/diffusers/blob/839c2a5ece0af4e75530cb520d77bc7ed8acf474/examples/textual_inversion/textual_inversion.py#L573)函数中可找到数据集预处理代码和训练循环。
脚本首先加载[tokenizer](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L616)、[scheduler和模型](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L622)
```py
# 加载tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
# 加载scheduler和模型
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
```
随后将特殊[占位符词汇](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L632)加入tokenizer并调整嵌入层以适配新词汇。
接着,脚本通过`TextualInversionDataset`[创建数据集](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L716)
```py
train_dataset = TextualInversionDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))),
repeats=args.repeats,
learnable_property=args.learnable_property,
center_crop=args.center_crop,
set="train",
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
)
```
最后,[训练循环](https://github.com/huggingface/diffusers/blob/b81c69e489aad3a0ba73798c459a33990dc4379c/examples/textual_inversion/textual_inversion.py#L784)处理从预测噪声残差到更新特殊占位符词汇嵌入权重的所有流程。
如需深入了解训练循环工作原理,请参阅[理解管道、模型与调度器](../using-diffusers/write_own_pipeline)教程,该教程解析了去噪过程的基本模式。
## 启动脚本
完成所有修改或确认默认配置后,即可启动训练脚本!🚀
本指南将下载[猫玩具](https://huggingface.co/datasets/diffusers/cat_toy_example)的示例图像并存储在目录中。当然,您也可以创建和使用自己的数据集(参见[创建训练数据集](create_dataset)指南)。
```py
from huggingface_hub import snapshot_download
local_dir = "./cat"
snapshot_download(
"diffusers/cat_toy_example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes"
)
```
设置环境变量`MODEL_NAME`为Hub上的模型ID或本地模型路径`DATA_DIR`为刚下载的猫图像路径。脚本会将以下文件保存至您的仓库:
- `learned_embeds.bin`:与示例图像对应的学习嵌入向量
- `token_identifier.txt`:特殊占位符词汇
- `type_of_concept.txt`:训练概念类型("object"或"style"
> [!WARNING]
> 在单块V100 GPU上完整训练约需1小时。
启动脚本前还有最后一步。如果想实时观察训练过程,可以定期保存生成图像。在训练命令中添加以下参数:
```bash
--validation_prompt="A <cat-toy> train"
--num_validation_images=4
--validation_steps=100
```
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```bash
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export DATA_DIR="./cat"
accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATA_DIR \
--learnable_property="object" \
--placeholder_token="<cat-toy>" \
--initializer_token="toy" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=3000 \
--learning_rate=5.0e-04 \
--scale_lr \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--output_dir="textual_inversion_cat" \
--push_to_hub
```
</hfoption>
<hfoption id="Flax">
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export DATA_DIR="./cat"
python textual_inversion_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATA_DIR \
--learnable_property="object" \
--placeholder_token="<cat-toy>" \
--initializer_token="toy" \
--resolution=512 \
--train_batch_size=1 \
--max_train_steps=3000 \
--learning_rate=5.0e-04 \
--scale_lr \
--output_dir="textual_inversion_cat" \
--push_to_hub
```
</hfoption>
</hfoptions>
训练完成后,可以像这样使用新模型进行推理:
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```py
from diffusers import StableDiffusionPipeline
import torch
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("sd-concepts-library/cat-toy")
image = pipeline("A <cat-toy> train", num_inference_steps=50).images[0]
image.save("cat-train.png")
```
</hfoption>
<hfoption id="Flax">
Flax不支持[`~loaders.TextualInversionLoaderMixin.load_textual_inversion`]方法但textual_inversion_flax.py脚本会在训练后[保存](https://github.com/huggingface/diffusers/blob/c0f058265161178f2a88849e92b37ffdc81f1dcc/examples/textual_inversion/textual_inversion_flax.py#L636C2-L636C2)学习到的嵌入作为模型的一部分。这意味着您可以像使用其他Flax模型一样进行推理
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
model_path = "path-to-your-trained-model"
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
prompt = "A <cat-toy> train"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# 分片输入和随机数生成器
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("cat-train.png")
```
</hfoption>
</hfoptions>
## 后续步骤
恭喜您成功训练了自己的文本反转模型!🎉 如需了解更多使用技巧,以下指南可能会有所帮助:
- 学习如何[加载文本反转嵌入](../using-diffusers/loading_adapters),并将其用作负面嵌入
- 学习如何将[文本反转](textual_inversion_inference)应用于Stable Diffusion 1/2和Stable Diffusion XL的推理