1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/models/autoencoders/test_models_autoencoder_wan.py
YiYi Xu 2d8a41cae8 [Alibaba Wan Team] continue on #10921 Wan2.1 (#10922)
* Add wanx pipeline, model and example

* wanx_merged_v1

* change WanX into Wan

* fix i2v fp32 oom error

Link: https://code.alibaba-inc.com/open_wanx2/diffusers/codereview/20607813

* support t2v load fp32 ckpt

* add example

* final merge v1

* Update autoencoder_kl_wan.py

* up

* update middle, test up_block

* up up

* one less nn.sequential

* up more

* up

* more

* [refactor] [wip] Wan transformer/pipeline (#10926)

* update

* update

* refactor rope

* refactor pipeline

* make fix-copies

* add transformer test

* update

* update

* make style

* update tests

* tests

* conversion script

* conversion script

* update

* docs

* remove unused code

* fix _toctree.yml

* update dtype

* fix test

* fix tests: scale

* up

* more

* Apply suggestions from code review

* Apply suggestions from code review

* style

* Update scripts/convert_wan_to_diffusers.py

* update docs

* fix

---------

Co-authored-by: Yitong Huang <huangyitong.hyt@alibaba-inc.com>
Co-authored-by: 亚森 <wangjiayu.wjy@alibaba-inc.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-03-02 17:24:26 +05:30

80 lines
2.3 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from diffusers import AutoencoderKLWan
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class AutoencoderKLWanTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AutoencoderKLWan
main_input_name = "sample"
base_precision = 1e-2
def get_autoencoder_kl_wan_config(self):
return {
"base_dim": 3,
"z_dim": 16,
"dim_mult": [1, 1, 1, 1],
"num_res_blocks": 1,
"temperal_downsample": [False, True, True],
}
@property
def dummy_input(self):
batch_size = 2
num_frames = 9
num_channels = 3
sizes = (16, 16)
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 9, 16, 16)
@property
def output_shape(self):
return (3, 9, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = self.get_autoencoder_kl_wan_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skip("Gradient checkpointing has not been implemented yet")
def test_gradient_checkpointing_is_applied(self):
pass
@unittest.skip("Test not supported")
def test_forward_with_norm_groups(self):
pass
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
def test_layerwise_casting_inference(self):
pass
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
def test_layerwise_casting_training(self):
pass