1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[Alibaba Wan Team] continue on #10921 Wan2.1 (#10922)

* Add wanx pipeline, model and example

* wanx_merged_v1

* change WanX into Wan

* fix i2v fp32 oom error

Link: https://code.alibaba-inc.com/open_wanx2/diffusers/codereview/20607813

* support t2v load fp32 ckpt

* add example

* final merge v1

* Update autoencoder_kl_wan.py

* up

* update middle, test up_block

* up up

* one less nn.sequential

* up more

* up

* more

* [refactor] [wip] Wan transformer/pipeline (#10926)

* update

* update

* refactor rope

* refactor pipeline

* make fix-copies

* add transformer test

* update

* update

* make style

* update tests

* tests

* conversion script

* conversion script

* update

* docs

* remove unused code

* fix _toctree.yml

* update dtype

* fix test

* fix tests: scale

* up

* more

* Apply suggestions from code review

* Apply suggestions from code review

* style

* Update scripts/convert_wan_to_diffusers.py

* update docs

* fix

---------

Co-authored-by: Yitong Huang <huangyitong.hyt@alibaba-inc.com>
Co-authored-by: 亚森 <wangjiayu.wjy@alibaba-inc.com>
Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
YiYi Xu
2025-03-02 01:54:26 -10:00
committed by GitHub
parent 7007febae5
commit 2d8a41cae8
26 changed files with 3700 additions and 3 deletions

View File

@@ -314,6 +314,8 @@
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/wan_transformer_3d
title: WanTransformer3DModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
@@ -344,6 +346,8 @@
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/autoencoder_kl_wan
title: AutoencoderKLWan
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
@@ -534,6 +538,8 @@
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/wan
title: Wan
- local: api/pipelines/wuerstchen
title: Wuerstchen
title: Pipelines

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLWan
The 3D variational autoencoder (VAE) model with KL loss used in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLWan
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
```
## AutoencoderKLWan
[[autodoc]] AutoencoderKLWan
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# WanTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import WanTransformer3DModel
transformer = WanTransformer3DModel.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## WanTransformer3DModel
[[autodoc]] WanTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,62 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# Wan
[Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
<!-- TODO(aryan): update abstract once paper is out -->
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
Recommendations for inference:
- VAE in `torch.float32` for better decoding quality.
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `81`.
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution videos, try higher values (between `7.0` and `12.0`). The default value is `3.0` for Wan.
### Using a custom scheduler
Wan can be used with many different schedulers, each with their own benefits regarding speed and generation quality. By default, Wan uses the `UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)` scheduler. You can use a different scheduler as follows:
```python
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler, WanPipeline
scheduler_a = FlowMatchEulerDiscreteScheduler(shift=5.0)
scheduler_b = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=4.0)
pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", scheduler=<CUSTOM_SCHEDULER_HERE>)
# or,
pipe.scheduler = <CUSTOM_SCHEDULER_HERE>
```
## WanPipeline
[[autodoc]] WanPipeline
- all
- __call__
## WanImageToVideoPipeline
[[autodoc]] WanImageToVideoPipeline
- all
- __call__
## WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput

View File

@@ -0,0 +1,423 @@
import argparse
import pathlib
from typing import Any, Dict
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from safetensors.torch import load_file
from transformers import AutoProcessor, AutoTokenizer, CLIPVisionModelWithProjection, UMT5EncoderModel
from diffusers import (
AutoencoderKLWan,
UniPCMultistepScheduler,
WanImageToVideoPipeline,
WanPipeline,
WanTransformer3DModel,
)
TRANSFORMER_KEYS_RENAME_DICT = {
"time_embedding.0": "condition_embedder.time_embedder.linear_1",
"time_embedding.2": "condition_embedder.time_embedder.linear_2",
"text_embedding.0": "condition_embedder.text_embedder.linear_1",
"text_embedding.2": "condition_embedder.text_embedder.linear_2",
"time_projection.1": "condition_embedder.time_proj",
"head.modulation": "scale_shift_table",
"head.head": "proj_out",
"modulation": "scale_shift_table",
"ffn.0": "ffn.net.0.proj",
"ffn.2": "ffn.net.2",
# Hack to swap the layer names
# The original model calls the norms in following order: norm1, norm3, norm2
# We convert it to: norm1, norm2, norm3
"norm2": "norm__placeholder",
"norm3": "norm2",
"norm__placeholder": "norm3",
# For the I2V model
"img_emb.proj.0": "condition_embedder.image_embedder.norm1",
"img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj",
"img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2",
"img_emb.proj.4": "condition_embedder.image_embedder.norm2",
}
TRANSFORMER_SPECIAL_KEYS_REMAP = {}
def update_state_dict_(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
state_dict[new_key] = state_dict.pop(old_key)
def load_sharded_safetensors(dir: pathlib.Path):
file_paths = list(dir.glob("diffusion_pytorch_model*.safetensors"))
state_dict = {}
for path in file_paths:
state_dict.update(load_file(path))
return state_dict
def get_transformer_config(model_type: str) -> Dict[str, Any]:
if model_type == "Wan-T2V-1.3B":
config = {
"model_id": "StevenZhang/Wan2.1-T2V-1.3B-Diff",
"diffusers_config": {
"added_kv_proj_dim": None,
"attention_head_dim": 128,
"cross_attn_norm": True,
"eps": 1e-06,
"ffn_dim": 8960,
"freq_dim": 256,
"in_channels": 16,
"num_attention_heads": 12,
"num_layers": 30,
"out_channels": 16,
"patch_size": [1, 2, 2],
"qk_norm": "rms_norm_across_heads",
"text_dim": 4096,
},
}
elif model_type == "Wan-T2V-14B":
config = {
"model_id": "StevenZhang/Wan2.1-T2V-14B-Diff",
"diffusers_config": {
"added_kv_proj_dim": None,
"attention_head_dim": 128,
"cross_attn_norm": True,
"eps": 1e-06,
"ffn_dim": 13824,
"freq_dim": 256,
"in_channels": 16,
"num_attention_heads": 40,
"num_layers": 40,
"out_channels": 16,
"patch_size": [1, 2, 2],
"qk_norm": "rms_norm_across_heads",
"text_dim": 4096,
},
}
elif model_type == "Wan-I2V-14B-480p":
config = {
"model_id": "StevenZhang/Wan2.1-I2V-14B-480P-Diff",
"diffusers_config": {
"image_dim": 1280,
"added_kv_proj_dim": 5120,
"attention_head_dim": 128,
"cross_attn_norm": True,
"eps": 1e-06,
"ffn_dim": 13824,
"freq_dim": 256,
"in_channels": 36,
"num_attention_heads": 40,
"num_layers": 40,
"out_channels": 16,
"patch_size": [1, 2, 2],
"qk_norm": "rms_norm_across_heads",
"text_dim": 4096,
},
}
elif model_type == "Wan-I2V-14B-720p":
config = {
"model_id": "StevenZhang/Wan2.1-I2V-14B-720P-Diff",
"diffusers_config": {
"image_dim": 1280,
"added_kv_proj_dim": 5120,
"attention_head_dim": 128,
"cross_attn_norm": True,
"eps": 1e-06,
"ffn_dim": 13824,
"freq_dim": 256,
"in_channels": 36,
"num_attention_heads": 40,
"num_layers": 40,
"out_channels": 16,
"patch_size": [1, 2, 2],
"qk_norm": "rms_norm_across_heads",
"text_dim": 4096,
},
}
return config
def convert_transformer(model_type: str):
config = get_transformer_config(model_type)
diffusers_config = config["diffusers_config"]
model_id = config["model_id"]
model_dir = pathlib.Path(snapshot_download(model_id, repo_type="model"))
original_state_dict = load_sharded_safetensors(model_dir)
with init_empty_weights():
transformer = WanTransformer3DModel.from_config(diffusers_config)
for key in list(original_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_(original_state_dict, key, new_key)
for key in list(original_state_dict.keys()):
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, original_state_dict)
transformer.load_state_dict(original_state_dict, strict=True, assign=True)
return transformer
def convert_vae():
vae_ckpt_path = hf_hub_download("Wan-AI/Wan2.1-T2V-14B", "Wan2.1_VAE.pth")
old_state_dict = torch.load(vae_ckpt_path, weights_only=True)
new_state_dict = {}
# Create mappings for specific components
middle_key_mapping = {
# Encoder middle block
"encoder.middle.0.residual.0.gamma": "encoder.mid_block.resnets.0.norm1.gamma",
"encoder.middle.0.residual.2.bias": "encoder.mid_block.resnets.0.conv1.bias",
"encoder.middle.0.residual.2.weight": "encoder.mid_block.resnets.0.conv1.weight",
"encoder.middle.0.residual.3.gamma": "encoder.mid_block.resnets.0.norm2.gamma",
"encoder.middle.0.residual.6.bias": "encoder.mid_block.resnets.0.conv2.bias",
"encoder.middle.0.residual.6.weight": "encoder.mid_block.resnets.0.conv2.weight",
"encoder.middle.2.residual.0.gamma": "encoder.mid_block.resnets.1.norm1.gamma",
"encoder.middle.2.residual.2.bias": "encoder.mid_block.resnets.1.conv1.bias",
"encoder.middle.2.residual.2.weight": "encoder.mid_block.resnets.1.conv1.weight",
"encoder.middle.2.residual.3.gamma": "encoder.mid_block.resnets.1.norm2.gamma",
"encoder.middle.2.residual.6.bias": "encoder.mid_block.resnets.1.conv2.bias",
"encoder.middle.2.residual.6.weight": "encoder.mid_block.resnets.1.conv2.weight",
# Decoder middle block
"decoder.middle.0.residual.0.gamma": "decoder.mid_block.resnets.0.norm1.gamma",
"decoder.middle.0.residual.2.bias": "decoder.mid_block.resnets.0.conv1.bias",
"decoder.middle.0.residual.2.weight": "decoder.mid_block.resnets.0.conv1.weight",
"decoder.middle.0.residual.3.gamma": "decoder.mid_block.resnets.0.norm2.gamma",
"decoder.middle.0.residual.6.bias": "decoder.mid_block.resnets.0.conv2.bias",
"decoder.middle.0.residual.6.weight": "decoder.mid_block.resnets.0.conv2.weight",
"decoder.middle.2.residual.0.gamma": "decoder.mid_block.resnets.1.norm1.gamma",
"decoder.middle.2.residual.2.bias": "decoder.mid_block.resnets.1.conv1.bias",
"decoder.middle.2.residual.2.weight": "decoder.mid_block.resnets.1.conv1.weight",
"decoder.middle.2.residual.3.gamma": "decoder.mid_block.resnets.1.norm2.gamma",
"decoder.middle.2.residual.6.bias": "decoder.mid_block.resnets.1.conv2.bias",
"decoder.middle.2.residual.6.weight": "decoder.mid_block.resnets.1.conv2.weight",
}
# Create a mapping for attention blocks
attention_mapping = {
# Encoder middle attention
"encoder.middle.1.norm.gamma": "encoder.mid_block.attentions.0.norm.gamma",
"encoder.middle.1.to_qkv.weight": "encoder.mid_block.attentions.0.to_qkv.weight",
"encoder.middle.1.to_qkv.bias": "encoder.mid_block.attentions.0.to_qkv.bias",
"encoder.middle.1.proj.weight": "encoder.mid_block.attentions.0.proj.weight",
"encoder.middle.1.proj.bias": "encoder.mid_block.attentions.0.proj.bias",
# Decoder middle attention
"decoder.middle.1.norm.gamma": "decoder.mid_block.attentions.0.norm.gamma",
"decoder.middle.1.to_qkv.weight": "decoder.mid_block.attentions.0.to_qkv.weight",
"decoder.middle.1.to_qkv.bias": "decoder.mid_block.attentions.0.to_qkv.bias",
"decoder.middle.1.proj.weight": "decoder.mid_block.attentions.0.proj.weight",
"decoder.middle.1.proj.bias": "decoder.mid_block.attentions.0.proj.bias",
}
# Create a mapping for the head components
head_mapping = {
# Encoder head
"encoder.head.0.gamma": "encoder.norm_out.gamma",
"encoder.head.2.bias": "encoder.conv_out.bias",
"encoder.head.2.weight": "encoder.conv_out.weight",
# Decoder head
"decoder.head.0.gamma": "decoder.norm_out.gamma",
"decoder.head.2.bias": "decoder.conv_out.bias",
"decoder.head.2.weight": "decoder.conv_out.weight",
}
# Create a mapping for the quant components
quant_mapping = {
"conv1.weight": "quant_conv.weight",
"conv1.bias": "quant_conv.bias",
"conv2.weight": "post_quant_conv.weight",
"conv2.bias": "post_quant_conv.bias",
}
# Process each key in the state dict
for key, value in old_state_dict.items():
# Handle middle block keys using the mapping
if key in middle_key_mapping:
new_key = middle_key_mapping[key]
new_state_dict[new_key] = value
# Handle attention blocks using the mapping
elif key in attention_mapping:
new_key = attention_mapping[key]
new_state_dict[new_key] = value
# Handle head keys using the mapping
elif key in head_mapping:
new_key = head_mapping[key]
new_state_dict[new_key] = value
# Handle quant keys using the mapping
elif key in quant_mapping:
new_key = quant_mapping[key]
new_state_dict[new_key] = value
# Handle encoder conv1
elif key == "encoder.conv1.weight":
new_state_dict["encoder.conv_in.weight"] = value
elif key == "encoder.conv1.bias":
new_state_dict["encoder.conv_in.bias"] = value
# Handle decoder conv1
elif key == "decoder.conv1.weight":
new_state_dict["decoder.conv_in.weight"] = value
elif key == "decoder.conv1.bias":
new_state_dict["decoder.conv_in.bias"] = value
# Handle encoder downsamples
elif key.startswith("encoder.downsamples."):
# Convert to down_blocks
new_key = key.replace("encoder.downsamples.", "encoder.down_blocks.")
# Convert residual block naming but keep the original structure
if ".residual.0.gamma" in new_key:
new_key = new_key.replace(".residual.0.gamma", ".norm1.gamma")
elif ".residual.2.bias" in new_key:
new_key = new_key.replace(".residual.2.bias", ".conv1.bias")
elif ".residual.2.weight" in new_key:
new_key = new_key.replace(".residual.2.weight", ".conv1.weight")
elif ".residual.3.gamma" in new_key:
new_key = new_key.replace(".residual.3.gamma", ".norm2.gamma")
elif ".residual.6.bias" in new_key:
new_key = new_key.replace(".residual.6.bias", ".conv2.bias")
elif ".residual.6.weight" in new_key:
new_key = new_key.replace(".residual.6.weight", ".conv2.weight")
elif ".shortcut.bias" in new_key:
new_key = new_key.replace(".shortcut.bias", ".conv_shortcut.bias")
elif ".shortcut.weight" in new_key:
new_key = new_key.replace(".shortcut.weight", ".conv_shortcut.weight")
new_state_dict[new_key] = value
# Handle decoder upsamples
elif key.startswith("decoder.upsamples."):
# Convert to up_blocks
parts = key.split(".")
block_idx = int(parts[2])
# Group residual blocks
if "residual" in key:
if block_idx in [0, 1, 2]:
new_block_idx = 0
resnet_idx = block_idx
elif block_idx in [4, 5, 6]:
new_block_idx = 1
resnet_idx = block_idx - 4
elif block_idx in [8, 9, 10]:
new_block_idx = 2
resnet_idx = block_idx - 8
elif block_idx in [12, 13, 14]:
new_block_idx = 3
resnet_idx = block_idx - 12
else:
# Keep as is for other blocks
new_state_dict[key] = value
continue
# Convert residual block naming
if ".residual.0.gamma" in key:
new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm1.gamma"
elif ".residual.2.bias" in key:
new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.bias"
elif ".residual.2.weight" in key:
new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.weight"
elif ".residual.3.gamma" in key:
new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm2.gamma"
elif ".residual.6.bias" in key:
new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.bias"
elif ".residual.6.weight" in key:
new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.weight"
else:
new_key = key
new_state_dict[new_key] = value
# Handle shortcut connections
elif ".shortcut." in key:
if block_idx == 4:
new_key = key.replace(".shortcut.", ".resnets.0.conv_shortcut.")
new_key = new_key.replace("decoder.upsamples.4", "decoder.up_blocks.1")
else:
new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
new_key = new_key.replace(".shortcut.", ".conv_shortcut.")
new_state_dict[new_key] = value
# Handle upsamplers
elif ".resample." in key or ".time_conv." in key:
if block_idx == 3:
new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.0.upsamplers.0")
elif block_idx == 7:
new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.1.upsamplers.0")
elif block_idx == 11:
new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.2.upsamplers.0")
else:
new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
new_state_dict[new_key] = value
else:
new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
new_state_dict[new_key] = value
else:
# Keep other keys unchanged
new_state_dict[key] = value
with init_empty_weights():
vae = AutoencoderKLWan()
vae.load_state_dict(new_state_dict, strict=True, assign=True)
return vae
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default=None)
parser.add_argument("--output_path", type=str, required=True)
parser.add_argument("--dtype", default="fp32")
return parser.parse_args()
DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
if __name__ == "__main__":
args = get_args()
transformer = None
dtype = DTYPE_MAPPING[args.dtype]
transformer = convert_transformer(args.model_type).to(dtype=dtype)
vae = convert_vae()
text_encoder = UMT5EncoderModel.from_pretrained("google/umt5-xxl")
tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl")
scheduler = UniPCMultistepScheduler(
prediction_type="flow_prediction", use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=3.0
)
if "I2V" in args.model_type:
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=torch.bfloat16
)
image_processor = AutoProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
pipe = WanImageToVideoPipeline(
transformer=transformer,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae,
scheduler=scheduler,
image_encoder=image_encoder,
image_processor=image_processor,
)
else:
pipe = WanPipeline(
transformer=transformer,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae,
scheduler=scheduler,
)
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")

View File

@@ -96,6 +96,7 @@ else:
"AutoencoderKLLTXVideo",
"AutoencoderKLMochi",
"AutoencoderKLTemporalDecoder",
"AutoencoderKLWan",
"AutoencoderOobleck",
"AutoencoderTiny",
"CacheMixin",
@@ -148,6 +149,7 @@ else:
"UNetSpatioTemporalConditionModel",
"UVit2DModel",
"VQModel",
"WanTransformer3DModel",
]
)
_import_structure["optimization"] = [
@@ -438,6 +440,8 @@ else:
"VersatileDiffusionTextToImagePipeline",
"VideoToVideoSDPipeline",
"VQDiffusionPipeline",
"WanImageToVideoPipeline",
"WanPipeline",
"WuerstchenCombinedPipeline",
"WuerstchenDecoderPipeline",
"WuerstchenPriorPipeline",
@@ -618,6 +622,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AutoencoderKLLTXVideo,
AutoencoderKLMochi,
AutoencoderKLTemporalDecoder,
AutoencoderKLWan,
AutoencoderOobleck,
AutoencoderTiny,
CacheMixin,
@@ -669,6 +674,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
UNetSpatioTemporalConditionModel,
UVit2DModel,
VQModel,
WanTransformer3DModel,
)
from .optimization import (
get_constant_schedule,
@@ -938,6 +944,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
WanImageToVideoPipeline,
WanPipeline,
WuerstchenCombinedPipeline,
WuerstchenDecoderPipeline,
WuerstchenPriorPipeline,

View File

@@ -35,6 +35,7 @@ if is_torch_available():
_import_structure["autoencoders.autoencoder_kl_ltx"] = ["AutoencoderKLLTXVideo"]
_import_structure["autoencoders.autoencoder_kl_mochi"] = ["AutoencoderKLMochi"]
_import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
_import_structure["autoencoders.autoencoder_kl_wan"] = ["AutoencoderKLWan"]
_import_structure["autoencoders.autoencoder_oobleck"] = ["AutoencoderOobleck"]
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
@@ -79,6 +80,7 @@ if is_torch_available():
_import_structure["transformers.transformer_omnigen"] = ["OmniGenTransformer2DModel"]
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
_import_structure["transformers.transformer_wan"] = ["WanTransformer3DModel"]
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
_import_structure["unets.unet_2d"] = ["UNet2DModel"]
_import_structure["unets.unet_2d_condition"] = ["UNet2DConditionModel"]
@@ -109,6 +111,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AutoencoderKLLTXVideo,
AutoencoderKLMochi,
AutoencoderKLTemporalDecoder,
AutoencoderKLWan,
AutoencoderOobleck,
AutoencoderTiny,
ConsistencyDecoderVAE,
@@ -158,6 +161,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
T5FilmDecoder,
Transformer2DModel,
TransformerTemporalModel,
WanTransformer3DModel,
)
from .unets import (
I2VGenXLUNet,

View File

@@ -280,6 +280,10 @@ class Attention(nn.Module):
elif qk_norm == "rms_norm":
self.norm_added_q = RMSNorm(dim_head, eps=eps)
self.norm_added_k = RMSNorm(dim_head, eps=eps)
elif qk_norm == "rms_norm_across_heads":
# Wanx applies qk norm across all heads
self.norm_added_q = RMSNorm(dim_head * heads, eps=eps)
self.norm_added_k = RMSNorm(dim_head * kv_heads, eps=eps)
else:
raise ValueError(
f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`"

View File

@@ -7,6 +7,7 @@ from .autoencoder_kl_hunyuan_video import AutoencoderKLHunyuanVideo
from .autoencoder_kl_ltx import AutoencoderKLLTXVideo
from .autoencoder_kl_mochi import AutoencoderKLMochi
from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder
from .autoencoder_kl_wan import AutoencoderKLWan
from .autoencoder_oobleck import AutoencoderOobleck
from .autoencoder_tiny import AutoencoderTiny
from .consistency_decoder_vae import ConsistencyDecoderVAE

View File

@@ -0,0 +1,865 @@
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
CACHE_T = 2
class WanCausalConv3d(nn.Conv3d):
r"""
A custom 3D causal convolution layer with feature caching support.
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
caching for efficient inference.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Union[int, Tuple[int, int, int]] = 0,
) -> None:
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
)
# Set up causal padding
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
x = F.pad(x, padding)
return super().forward(x)
class WanRMS_norm(nn.Module):
r"""
A custom RMS normalization layer.
Args:
dim (int): The number of dimensions to normalize over.
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
Default is True.
images (bool, optional): Whether the input represents image data. Default is True.
bias (bool, optional): Whether to include a learnable bias term. Default is False.
"""
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
def forward(self, x):
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
class WanUpsample(nn.Upsample):
r"""
Perform upsampling while ensuring the output tensor has the same data type as the input.
Args:
x (torch.Tensor): Input tensor to be upsampled.
Returns:
torch.Tensor: Upsampled tensor with the same data type as the input.
"""
def forward(self, x):
return super().forward(x.float()).type_as(x)
class WanResample(nn.Module):
r"""
A custom resampling module for 2D and 3D data.
Args:
dim (int): The number of input/output channels.
mode (str): The resampling mode. Must be one of:
- 'none': No resampling (identity operation).
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
- 'downsample2d': 2D downsampling with zero-padding and convolution.
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
"""
def __init__(self, dim: int, mode: str) -> None:
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == "upsample2d":
self.resample = nn.Sequential(
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
)
elif mode == "upsample3d":
self.resample = nn.Sequential(
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
)
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == "downsample2d":
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
elif mode == "downsample3d":
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == "upsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = "Rep"
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
# cache last frame of last two chunk
cache_x = torch.cat(
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
)
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
if feat_cache[idx] == "Rep":
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
x = self.resample(x)
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
if self.mode == "downsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
class WanResidualBlock(nn.Module):
r"""
A custom residual block module.
Args:
in_dim (int): Number of input channels.
out_dim (int): Number of output channels.
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
"""
def __init__(
self,
in_dim: int,
out_dim: int,
dropout: float = 0.0,
non_linearity: str = "silu",
) -> None:
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.nonlinearity = get_activation(non_linearity)
# layers
self.norm1 = WanRMS_norm(in_dim, images=False)
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
self.norm2 = WanRMS_norm(out_dim, images=False)
self.dropout = nn.Dropout(dropout)
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
# Apply shortcut connection
h = self.conv_shortcut(x)
# First normalization and activation
x = self.norm1(x)
x = self.nonlinearity(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
# Second normalization and activation
x = self.norm2(x)
x = self.nonlinearity(x)
# Dropout
x = self.dropout(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv2(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv2(x)
# Add residual connection
return x + h
class WanAttentionBlock(nn.Module):
r"""
Causal self-attention with a single head.
Args:
dim (int): The number of channels in the input tensor.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = WanRMS_norm(dim)
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
self.proj = nn.Conv2d(dim, dim, 1)
def forward(self, x):
identity = x
batch_size, channels, time, height, width = x.size()
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
x = self.norm(x)
# compute query, key, value
qkv = self.to_qkv(x)
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
qkv = qkv.permute(0, 1, 3, 2).contiguous()
q, k, v = qkv.chunk(3, dim=-1)
# apply attention
x = F.scaled_dot_product_attention(q, k, v)
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
# output projection
x = self.proj(x)
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
x = x.view(batch_size, time, channels, height, width)
x = x.permute(0, 2, 1, 3, 4)
return x + identity
class WanMidBlock(nn.Module):
"""
Middle block for WanVAE encoder and decoder.
Args:
dim (int): Number of input/output channels.
dropout (float): Dropout rate.
non_linearity (str): Type of non-linearity to use.
"""
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
super().__init__()
self.dim = dim
# Create the components
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
attentions = []
for _ in range(num_layers):
attentions.append(WanAttentionBlock(dim))
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
# First residual block
x = self.resnets[0](x, feat_cache, feat_idx)
# Process through attention and residual blocks
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if attn is not None:
x = attn(x)
x = resnet(x, feat_cache, feat_idx)
return x
class WanEncoder3d(nn.Module):
r"""
A 3D encoder module.
Args:
dim (int): The base number of channels in the first layer.
z_dim (int): The dimensionality of the latent space.
dim_mult (list of int): Multipliers for the number of channels in each block.
num_res_blocks (int): Number of residual blocks in each block.
attn_scales (list of float): Scales at which to apply attention mechanisms.
temperal_downsample (list of bool): Whether to downsample temporally in each block.
dropout (float): Dropout rate for the dropout layers.
non_linearity (str): Type of non-linearity to use.
"""
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
non_linearity: str = "silu",
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.nonlinearity = get_activation(non_linearity)
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
self.down_blocks = nn.ModuleList([])
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
for _ in range(num_res_blocks):
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
self.down_blocks.append(WanAttentionBlock(out_dim))
in_dim = out_dim
# downsample block
if i != len(dim_mult) - 1:
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
self.down_blocks.append(WanResample(out_dim, mode=mode))
scale /= 2.0
# middle blocks
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
# output blocks
self.norm_out = WanRMS_norm(out_dim, images=False)
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_in(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_in(x)
## downsamples
for layer in self.down_blocks:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
x = self.mid_block(x, feat_cache, feat_idx)
## head
x = self.norm_out(x)
x = self.nonlinearity(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_out(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_out(x)
return x
class WanUpBlock(nn.Module):
"""
A block that handles upsampling for the WanVAE decoder.
Args:
in_dim (int): Input dimension
out_dim (int): Output dimension
num_res_blocks (int): Number of residual blocks
dropout (float): Dropout rate
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
non_linearity (str): Type of non-linearity to use
"""
def __init__(
self,
in_dim: int,
out_dim: int,
num_res_blocks: int,
dropout: float = 0.0,
upsample_mode: Optional[str] = None,
non_linearity: str = "silu",
):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# Create layers list
resnets = []
# Add residual blocks and attention if needed
current_dim = in_dim
for _ in range(num_res_blocks + 1):
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
current_dim = out_dim
self.resnets = nn.ModuleList(resnets)
# Add upsampling layer if needed
self.upsamplers = None
if upsample_mode is not None:
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
"""
Forward pass through the upsampling block.
Args:
x (torch.Tensor): Input tensor
feat_cache (list, optional): Feature cache for causal convolutions
feat_idx (list, optional): Feature index for cache management
Returns:
torch.Tensor: Output tensor
"""
for resnet in self.resnets:
if feat_cache is not None:
x = resnet(x, feat_cache, feat_idx)
else:
x = resnet(x)
if self.upsamplers is not None:
if feat_cache is not None:
x = self.upsamplers[0](x, feat_cache, feat_idx)
else:
x = self.upsamplers[0](x)
return x
class WanDecoder3d(nn.Module):
r"""
A 3D decoder module.
Args:
dim (int): The base number of channels in the first layer.
z_dim (int): The dimensionality of the latent space.
dim_mult (list of int): Multipliers for the number of channels in each block.
num_res_blocks (int): Number of residual blocks in each block.
attn_scales (list of float): Scales at which to apply attention mechanisms.
temperal_upsample (list of bool): Whether to upsample temporally in each block.
dropout (float): Dropout rate for the dropout layers.
non_linearity (str): Type of non-linearity to use.
"""
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0,
non_linearity: str = "silu",
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
self.nonlinearity = get_activation(non_linearity)
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2 ** (len(dim_mult) - 2)
# init block
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
# upsample blocks
self.up_blocks = nn.ModuleList([])
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i > 0:
in_dim = in_dim // 2
# Determine if we need upsampling
upsample_mode = None
if i != len(dim_mult) - 1:
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
# Create and add the upsampling block
up_block = WanUpBlock(
in_dim=in_dim,
out_dim=out_dim,
num_res_blocks=num_res_blocks,
dropout=dropout,
upsample_mode=upsample_mode,
non_linearity=non_linearity,
)
self.up_blocks.append(up_block)
# Update scale for next iteration
if upsample_mode is not None:
scale *= 2.0
# output blocks
self.norm_out = WanRMS_norm(out_dim, images=False)
self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_in(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_in(x)
## middle
x = self.mid_block(x, feat_cache, feat_idx)
## upsamples
for up_block in self.up_blocks:
x = up_block(x, feat_cache, feat_idx)
## head
x = self.norm_out(x)
x = self.nonlinearity(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_out(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_out(x)
return x
class AutoencoderKLWan(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
Introduced in [Wan 2.1].
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
"""
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
base_dim: int = 96,
z_dim: int = 16,
dim_mult: Tuple[int] = [1, 2, 4, 4],
num_res_blocks: int = 2,
attn_scales: List[float] = [],
temperal_downsample: List[bool] = [False, True, True],
dropout: float = 0.0,
latents_mean: List[float] = [
-0.7571,
-0.7089,
-0.9113,
0.1075,
-0.1745,
0.9653,
-0.1517,
1.5508,
0.4134,
-0.0715,
0.5517,
-0.3632,
-0.1922,
-0.9497,
0.2503,
-0.2921,
],
latents_std: List[float] = [
2.8184,
1.4541,
2.3275,
2.6558,
1.2196,
1.7708,
2.6052,
2.0743,
3.2687,
2.1526,
2.8652,
1.5579,
1.6382,
1.1253,
2.8251,
1.9160,
],
) -> None:
super().__init__()
# Store normalization parameters as tensors
self.mean = torch.tensor(latents_mean)
self.std = torch.tensor(latents_std)
self.scale = torch.stack([self.mean, 1.0 / self.std]) # Shape: [2, C]
self.z_dim = z_dim
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
self.encoder = WanEncoder3d(
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
)
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
self.decoder = WanDecoder3d(
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
)
def clear_cache(self):
def _count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, WanCausalConv3d):
count += 1
return count
self._conv_num = _count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
# cache encode
self._enc_conv_num = _count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num
def _encode(self, x: torch.Tensor) -> torch.Tensor:
scale = self.scale.type_as(x)
self.clear_cache()
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
out = torch.cat([out, out_], 2)
enc = self.quant_conv(out)
mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :]
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
logvar = (logvar - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
enc = torch.cat([mu, logvar], dim=1)
self.clear_cache()
return enc
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
r"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, scale, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
self.clear_cache()
# z: [b,c,t,h,w]
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
iter_ = z.shape[2]
x = self.post_quant_conv(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
else:
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
out = torch.cat([out, out_], 2)
out = torch.clamp(out, min=-1.0, max=1.0)
self.clear_cache()
if not return_dict:
return (out,)
return DecoderOutput(sample=out)
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
scale = self.scale.type_as(z)
decoded = self._decode(z, scale).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.Tensor]:
"""
Args:
sample (`torch.Tensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, return_dict=return_dict)
return dec

View File

@@ -166,8 +166,12 @@ def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
# 2. If no dtype modifying hooks are attached, return the dtype of the first floating point parameter/buffer
last_dtype = None
for param in parameter.parameters():
for name, param in parameter.named_parameters():
last_dtype = param.dtype
if parameter._keep_in_fp32_modules and any(m in name for m in parameter._keep_in_fp32_modules):
continue
if param.is_floating_point():
return param.dtype

View File

@@ -27,3 +27,4 @@ if is_torch_available():
from .transformer_omnigen import OmniGenTransformer2DModel
from .transformer_sd3 import SD3Transformer2DModel
from .transformer_temporal import TransformerTemporalModel
from .transformer_wan import WanTransformer3DModel

View File

@@ -0,0 +1,438 @@
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ..attention import FeedForward
from ..attention_processor import Attention
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import FP32LayerNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class WanAttnProcessor2_0:
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
encoder_hidden_states_img = None
if attn.add_k_proj is not None:
encoder_hidden_states_img = encoder_hidden_states[:, :257]
encoder_hidden_states = encoder_hidden_states[:, 257:]
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if rotary_emb is not None:
def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor):
x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2)))
x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4)
return x_out.type_as(hidden_states)
query = apply_rotary_emb(query, rotary_emb)
key = apply_rotary_emb(key, rotary_emb)
# I2V task
hidden_states_img = None
if encoder_hidden_states_img is not None:
key_img = attn.add_k_proj(encoder_hidden_states_img)
key_img = attn.norm_added_k(key_img)
value_img = attn.add_v_proj(encoder_hidden_states_img)
key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
hidden_states_img = F.scaled_dot_product_attention(
query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False
)
hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3)
hidden_states_img = hidden_states_img.type_as(query)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = hidden_states.type_as(query)
if hidden_states_img is not None:
hidden_states = hidden_states + hidden_states_img
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class WanImageEmbedding(torch.nn.Module):
def __init__(self, in_features: int, out_features: int):
super().__init__()
self.norm1 = nn.LayerNorm(in_features)
self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
self.norm2 = nn.LayerNorm(out_features)
def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
hidden_states = self.norm1(encoder_hidden_states_image)
hidden_states = self.ff(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states
class WanTimeTextImageEmbedding(nn.Module):
def __init__(
self,
dim: int,
time_freq_dim: int,
time_proj_dim: int,
text_embed_dim: int,
image_embed_dim: Optional[int] = None,
):
super().__init__()
self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
self.act_fn = nn.SiLU()
self.time_proj = nn.Linear(dim, time_proj_dim)
self.text_embedder = PixArtAlphaTextProjection(text_embed_dim, dim, act_fn="gelu_tanh")
self.image_embedder = None
if image_embed_dim is not None:
self.image_embedder = WanImageEmbedding(image_embed_dim, dim)
def forward(
self,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
):
timestep = self.timesteps_proj(timestep)
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
timestep = timestep.to(time_embedder_dtype)
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
timestep_proj = self.time_proj(self.act_fn(temb))
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
if encoder_hidden_states_image is not None:
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
class WanRotaryPosEmbed(nn.Module):
def __init__(
self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0
):
super().__init__()
self.attention_head_dim = attention_head_dim
self.patch_size = patch_size
self.max_seq_len = max_seq_len
h_dim = w_dim = 2 * (attention_head_dim // 6)
t_dim = attention_head_dim - h_dim - w_dim
freqs = []
for dim in [t_dim, h_dim, w_dim]:
freq = get_1d_rotary_pos_embed(
dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64
)
freqs.append(freq)
self.freqs = torch.cat(freqs, dim=1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.patch_size
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
self.freqs = self.freqs.to(hidden_states.device)
freqs = self.freqs.split_with_sizes(
[
self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6),
self.attention_head_dim // 6,
self.attention_head_dim // 6,
],
dim=1,
)
freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1)
return freqs
class WanTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
ffn_dim: int,
num_heads: int,
qk_norm: str = "rms_norm_across_heads",
cross_attn_norm: bool = False,
eps: float = 1e-6,
added_kv_proj_dim: Optional[int] = None,
):
super().__init__()
# 1. Self-attention
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.attn1 = Attention(
query_dim=dim,
heads=num_heads,
kv_heads=num_heads,
dim_head=dim // num_heads,
qk_norm=qk_norm,
eps=eps,
bias=True,
cross_attention_dim=None,
out_bias=True,
processor=WanAttnProcessor2_0(),
)
# 2. Cross-attention
self.attn2 = Attention(
query_dim=dim,
heads=num_heads,
kv_heads=num_heads,
dim_head=dim // num_heads,
qk_norm=qk_norm,
eps=eps,
bias=True,
cross_attention_dim=None,
out_bias=True,
added_kv_proj_dim=added_kv_proj_dim,
added_proj_bias=True,
processor=WanAttnProcessor2_0(),
)
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
# 3. Feed-forward
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
rotary_emb: torch.Tensor,
) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table + temb.float()
).chunk(6, dim=1)
# 1. Self-attention
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb)
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
# 2. Cross-attention
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
hidden_states = hidden_states + attn_output
# 3. Feed-forward
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
hidden_states
)
ff_output = self.ffn(norm_hidden_states)
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
return hidden_states
class WanTransformer3DModel(ModelMixin, ConfigMixin):
r"""
A Transformer model for video-like data used in the Wan model.
Args:
patch_size (`Tuple[int]`, defaults to `(1, 2, 2)`):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch).
num_attention_heads (`int`, defaults to `40`):
Fixed length for text embeddings.
attention_head_dim (`int`, defaults to `128`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
text_dim (`int`, defaults to `512`):
Input dimension for text embeddings.
freq_dim (`int`, defaults to `256`):
Dimension for sinusoidal time embeddings.
ffn_dim (`int`, defaults to `13824`):
Intermediate dimension in feed-forward network.
num_layers (`int`, defaults to `40`):
The number of layers of transformer blocks to use.
window_size (`Tuple[int]`, defaults to `(-1, -1)`):
Window size for local attention (-1 indicates global attention).
cross_attn_norm (`bool`, defaults to `True`):
Enable cross-attention normalization.
qk_norm (`bool`, defaults to `True`):
Enable query/key normalization.
eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
add_img_emb (`bool`, defaults to `False`):
Whether to use img_emb.
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
The number of channels to use for the added key and value projections. If `None`, no projection is used.
"""
_supports_gradient_checkpointing = True
_skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
_no_split_modules = ["WanTransformerBlock"]
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
@register_to_config
def __init__(
self,
patch_size: Tuple[int] = (1, 2, 2),
num_attention_heads: int = 40,
attention_head_dim: int = 128,
in_channels: int = 16,
out_channels: int = 16,
text_dim: int = 4096,
freq_dim: int = 256,
ffn_dim: int = 13824,
num_layers: int = 40,
cross_attn_norm: bool = True,
qk_norm: Optional[str] = "rms_norm_across_heads",
eps: float = 1e-6,
image_dim: Optional[int] = None,
added_kv_proj_dim: Optional[int] = None,
rope_max_seq_len: int = 1024,
) -> None:
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels or in_channels
# 1. Patch & position embedding
self.rope = WanRotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len)
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
# 2. Condition embeddings
# image_embedding_dim=1280 for I2V model
self.condition_embedder = WanTimeTextImageEmbedding(
dim=inner_dim,
time_freq_dim=freq_dim,
time_proj_dim=inner_dim * 6,
text_embed_dim=text_dim,
image_embed_dim=image_dim,
)
# 3. Transformer blocks
self.blocks = nn.ModuleList(
[
WanTransformerBlock(
inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
)
for _ in range(num_layers)
]
)
# 4. Output norm & projection
self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p_h
post_patch_width = width // p_w
rotary_emb = self.rope(hidden_states)
hidden_states = self.patch_embedding(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
timestep, encoder_hidden_states, encoder_hidden_states_image
)
timestep_proj = timestep_proj.unflatten(1, (6, -1))
if encoder_hidden_states_image is not None:
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.blocks:
hidden_states = self._gradient_checkpointing_func(
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb
)
else:
for block in self.blocks:
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb)
# 5. Output norm, projection & unpatchify
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
)
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -347,6 +347,7 @@ else:
"WuerstchenDecoderPipeline",
"WuerstchenPriorPipeline",
]
_import_structure["wan"] = ["WanPipeline", "WanImageToVideoPipeline"]
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
@@ -690,6 +691,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
UniDiffuserPipeline,
UniDiffuserTextDecoder,
)
from .wan import WanImageToVideoPipeline, WanPipeline
from .wuerstchen import (
WuerstchenCombinedPipeline,
WuerstchenDecoderPipeline,

View File

@@ -0,0 +1,50 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_wan"] = ["WanPipeline"]
_import_structure["pipeline_wan_i2v"] = ["WanImageToVideoPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_wan import WanPipeline
from .pipeline_wan_i2v import WanImageToVideoPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -0,0 +1,20 @@
from dataclasses import dataclass
import torch
from diffusers.utils import BaseOutput
@dataclass
class WanPipelineOutput(BaseOutput):
r"""
Output class for Wan pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor

View File

@@ -0,0 +1,562 @@
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
from typing import Callable, Dict, List, Optional, Union
import ftfy
import regex as re
import torch
from transformers import AutoTokenizer, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...models import AutoencoderKLWan, WanTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import WanPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> from diffusers import AutoencoderKLWan, WanPipeline
>>> from diffusers.utils import export_to_video
>>> # Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
>>> model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
>>> pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat walks on the grass, realistic"
>>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
>>> output = pipe(
... prompt=prompt,
... negative_prompt=negative_prompt,
... height=480,
... width=832,
... num_frames=81,
... guidance_scale=5.0,
... ).frames[0]
>>> export_to_video(output, "output.mp4", fps=15)
```
"""
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
class WanPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-video generation using Wan.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
tokenizer ([`T5Tokenizer`]):
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
transformer ([`WanTransformer3DModel`]):
Conditional Transformer to denoise the input latents.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLWan`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
transformer: WanTransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
def check_inputs(
self,
prompt,
negative_prompt,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if height % 16 != 0 or width % 16 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
def prepare_latents(
self,
batch_size: int,
num_channels_latents: 16,
height: int = 720,
width: int = 1280,
num_latent_frames: int = 21,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
num_latent_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, defaults to `720`):
The height in pixels of the generated image.
width (`int`, defaults to `1280`):
The width in pixels of the generated image.
num_frames (`int`, defaults to `129`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to `5.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
The dtype to use for the torch.amp.autocast.
Examples:
Returns:
[`~WanPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
height,
width,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return WanPipelineOutput(frames=video)

View File

@@ -0,0 +1,642 @@
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
from typing import Callable, Dict, List, Optional, Tuple, Union
import ftfy
import numpy as np
import PIL
import regex as re
import torch
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...models import AutoencoderKLWan, WanTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import WanPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
>>> from diffusers.utils import export_to_video, load_image
>>> # Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-1.3B-720P-Diffusers
>>> model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
>>> pipe = WanImageToVideoPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> height, width = 480, 832
>>> image = load_image(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
... ).resize((width, height))
>>> prompt = (
... "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
... "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
... )
>>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
>>> output = pipe(
... image=image, prompt=prompt, negative_prompt=negative_prompt, num_frames=81, guidance_scale=5.0
... ).frames[0]
>>> export_to_video(output, "output.mp4", fps=15)
```
"""
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class WanImageToVideoPipeline(DiffusionPipeline):
r"""
Pipeline for image-to-video generation using Wan.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
tokenizer ([`T5Tokenizer`]):
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
image_encoder ([`CLIPVisionModel`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel), specifically
the
[clip-vit-huge-patch14](https://github.com/mlfoundations/open_clip/blob/main/docs/PRETRAINED.md#vit-h14-xlm-roberta-large)
variant.
transformer ([`WanTransformer3DModel`]):
Conditional Transformer to denoise the input latents.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLWan`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
"""
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
image_encoder: CLIPVisionModel,
image_processor: CLIPImageProcessor,
transformer: WanTransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
transformer=transformer,
scheduler=scheduler,
image_processor=image_processor,
)
self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
self.image_processor = image_processor
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
def encode_image(self, image: PipelineImageInput):
image = self.image_processor(images=image, return_tensors="pt").to(self.device)
image_embeds = self.image_encoder(**image, output_hidden_states=True)
return image_embeds.hidden_states[-1]
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
def check_inputs(
self,
prompt,
image,
max_area,
prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
raise ValueError("`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is" f" {type(image)}")
if max_area < 0:
raise ValueError(f"`max_area` has to be positive but are {max_area}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
def prepare_latents(
self,
image: PipelineImageInput,
batch_size: int,
num_channels_latents: 32,
height: int = 720,
width: int = 1280,
max_area: int = 720 * 1280,
num_frames: int = 81,
num_latent_frames: int = 21,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
aspect_ratio = height / width
mod_value = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
num_latent_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
image = self.video_processor.preprocess(image, height=height, width=width)[:, :, None]
video_condition = torch.cat(
[image, torch.zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
)
video_condition = video_condition.to(device=device, dtype=dtype)
if isinstance(generator, list):
latent_condition = [retrieve_latents(self.vae.encode(video_condition), g) for g in generator]
latents = latent_condition = torch.cat(latent_condition)
else:
latent_condition = retrieve_latents(self.vae.encode(video_condition), generator)
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
mask_lat_size = torch.ones(
batch_size,
1,
num_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
mask_lat_size[:, :, list(range(1, num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size,
-1,
self.vae_scale_factor_temporal,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(latent_condition.device)
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
max_area: int = 720 * 1280,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PipelineImageInput`):
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
max_area (`int`, defaults to `1280 * 720`):
The maximum area in pixels of the generated image.
num_frames (`int`, defaults to `129`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to `5.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, *optional*, defaults to `512`):
The maximum sequence length of the prompt.
shift (`float`, *optional*, defaults to `5.0`):
The shift of the flow.
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
The dtype to use for the torch.amp.autocast.
Examples:
Returns:
[`~WanPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
image,
max_area,
prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
# Encode image embedding
image_embeds = self.encode_image(image)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
image_embeds = image_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
if isinstance(image, torch.Tensor):
height, width = image.shape[-2:]
else:
width, height = image.size
# 5. Prepare latent variables
num_channels_latents = self.vae.config.z_dim
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latents, condition = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
max_area,
num_frames,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return WanPipelineOutput(frames=video)

View File

@@ -201,6 +201,21 @@ class AutoencoderKLTemporalDecoder(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class AutoencoderKLWan(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class AutoencoderOobleck(metaclass=DummyObject):
_backends = ["torch"]
@@ -966,6 +981,21 @@ class VQModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class WanTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
def get_constant_schedule(*args, **kwargs):
requires_backends(get_constant_schedule, ["torch"])

View File

@@ -2597,6 +2597,36 @@ class VQDiffusionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class WanImageToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class WanPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class WuerstchenCombinedPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -0,0 +1,79 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from diffusers import AutoencoderKLWan
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class AutoencoderKLWanTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AutoencoderKLWan
main_input_name = "sample"
base_precision = 1e-2
def get_autoencoder_kl_wan_config(self):
return {
"base_dim": 3,
"z_dim": 16,
"dim_mult": [1, 1, 1, 1],
"num_res_blocks": 1,
"temperal_downsample": [False, True, True],
}
@property
def dummy_input(self):
batch_size = 2
num_frames = 9
num_channels = 3
sizes = (16, 16)
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 9, 16, 16)
@property
def output_shape(self):
return (3, 9, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = self.get_autoencoder_kl_wan_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skip("Gradient checkpointing has not been implemented yet")
def test_gradient_checkpointing_is_applied(self):
pass
@unittest.skip("Test not supported")
def test_forward_with_norm_groups(self):
pass
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
def test_layerwise_casting_inference(self):
pass
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
def test_layerwise_casting_training(self):
pass

View File

@@ -739,8 +739,14 @@ class ModelTesterMixin:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
assert new_model.dtype == dtype
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
assert new_model.dtype == dtype
if (
hasattr(self.model_class, "_keep_in_fp32_modules")
and self.model_class._keep_in_fp32_modules is None
):
new_model = self.model_class.from_pretrained(
tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype
)
assert new_model.dtype == dtype
def test_determinism(self, expected_max_diff=1e-5):
if self.forward_requires_fresh_args:

View File

@@ -0,0 +1,81 @@
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import WanTransformer3DModel
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 1, 16, 16)
@property
def output_shape(self):
return (4, 1, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
"in_channels": 4,
"out_channels": 4,
"text_dim": 16,
"freq_dim": 256,
"ffn_dim": 32,
"num_layers": 2,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

View File

View File

@@ -0,0 +1,156 @@
# Copyright 2024 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_accelerator,
slow,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineTesterMixin,
)
enable_full_determinism()
class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = WanPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
transformer = WanTransformer3DModel(
patch_size=(1, 2, 2),
num_attention_heads=2,
attention_head_dim=12,
in_channels=16,
out_channels=16,
text_dim=32,
freq_dim=256,
ffn_dim=32,
num_layers=2,
cross_attn_norm=True,
qk_norm="rms_norm_across_heads",
rope_max_seq_len=32,
)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "dance monkey",
"negative_prompt": "negative", # TODO
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"height": 16,
"width": 16,
"num_frames": 9,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (9, 3, 16, 16))
expected_video = torch.randn(9, 3, 16, 16)
max_diff = np.abs(generated_video - expected_video).max()
self.assertLessEqual(max_diff, 1e10)
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
@slow
@require_torch_accelerator
class WanPipelineIntegrationTests(unittest.TestCase):
prompt = "A painting of a squirrel eating a burger."
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@unittest.skip("TODO: test needs to be implemented")
def test_Wanx(self):
pass

View File

@@ -0,0 +1,161 @@
# Copyright 2024 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
T5EncoderModel,
)
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanImageToVideoPipeline, WanTransformer3DModel
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = WanImageToVideoPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "height", "width"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
transformer = WanTransformer3DModel(
patch_size=(1, 2, 2),
num_attention_heads=2,
attention_head_dim=12,
in_channels=36,
out_channels=16,
text_dim=32,
freq_dim=256,
ffn_dim=32,
num_layers=2,
cross_attn_norm=True,
qk_norm="rms_norm_across_heads",
rope_max_seq_len=32,
image_dim=4,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=4,
projection_dim=4,
num_hidden_layers=2,
num_attention_heads=2,
image_size=32,
intermediate_size=16,
patch_size=1,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
torch.manual_seed(0)
image_processor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"image_encoder": image_encoder,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image_height = 16
image_width = 16
image = Image.new("RGB", (image_width, image_height))
inputs = {
"image": image,
"prompt": "dance monkey",
"negative_prompt": "negative", # TODO
"max_area": 1024,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"num_frames": 9,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
expected_video = torch.randn(9, 3, 32, 32)
max_diff = np.abs(generated_video - expected_video).max()
self.assertLessEqual(max_diff, 1e10)
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
@unittest.skip("TODO: revisit failing as it requires a very high threshold to pass")
def test_inference_batch_single_identical(self):
pass